拓扑是什么意思呢?

拓扑是什么意思呢?,第1张

所谓“拓扑”就是把实体抽象成与其大小、形状无关的“点”,而把连接实体的线路抽象成“线”,进而以图的形式来表示这些点与线之间关系的方法,其目的在于研究这些点、线之间的相连关系。表示点和线之间关系的图被称为拓扑结构图。

在几何结构中,我们要考察的是点、线之间的位置关系,或者说几何结构强调的是点与线所构成的形状及大小。如梯形、正方形、平行四边形及圆都属于不同的几何结构,但从拓扑结构的角度去看,由于点、线间的连接关系相同,从而具有相同的拓扑结构即环型结构。也就是说,不同的几何结构可能具有相同的拓扑结构。

结构特征

(1)总线型拓扑结构是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。

(2)星形拓扑结构的每个节点都由一条单独的通信线路与中心节点连结。优点:结构简单、容易实现、便于管理,连接点的故障容易监测和排除。缺点:中心节点是全网络的可靠瓶颈,中心节点出现故障会导致网络的瘫痪。

(3)环形拓扑结构各结点通过通信线路组成闭合回路,环中数据只能单向传输。

拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。

拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。

扩展资料

例子

1、欧几里德空间在通常开集的意义下是拓扑空间,它的拓扑就是所有开集组成的集合。

2、设X是一个非空集合。则集合t:{X,{}}是X的一个拓扑。称t为X的平凡拓扑。显然(X,t)只有两个开集,X和{}。

3、设X是一个非空集合。则X的幂集T=2^X也是X的一个拓扑。称T为X的离散拓扑。显然X的任意子集都是(X,T)的开集。

4、一个具体的例子。设X={1,2}。则{X,{},{1}}是X的一个拓扑,{X,{},{2}}也是拓扑,{X,{},{1},{2}}是拓扑(由定义可知)。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/8610277.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-18
下一篇 2023-04-18

发表评论

登录后才能评论

评论列表(0条)

保存