如何做好销售数据分析

如何做好销售数据分析,第1张

你好,可以参考下面快消行业销售数据分析的案例:

某公司是全球最大的日用消费品公司之一,同时也是世界500强企业,拥有员工近10万人,涉及产品包括化妆品、个人清洁、个人护理、面部护理、婴儿护理、家居清洁等诸多品类。多年以前,该公司就在中国成立研发中心,重点开拓国内市场。时至今日,已在北京、上海、天津等地成立了多家分公司,员工总数近万人。

随着国内快消市场竞争环境的日趋激烈,这家公司也面临着较大的增长压力,同时,针对庞大的销售团队,如何进行更好的管理,也成为了目前该公司急需解决的问题。

业务痛点

为完成月度/季度/年度销售指标,需要实时了解整体业务运营情况,找出增长或下降原因,及时做出有效的应对;

销售团队庞大,想要及时了解每一名销售主管的销量完成情况、拜访完成情况、在店时间等指标;

业务系统繁多,如DMS经销商系统、CRM销售管理系统、WMS系统、财务系统等,各系统数据结构不统一、接口混乱,无法进行统一分析,数据孤岛问题严重。

现有做法

一直以来,该公司都以晨会形式进行销售团队的管理,但往往每次晨会都如走过场一般,黑板上的销售排名缺少及时有效的数据支撑,很难从人分析到店,再到产品,很多决策还是靠“拍脑袋”决定。

组建报表团队,负责每一个业务系统的数据报表工作。由于报表产品基本以“周”、“月”为单位,所以管理层无法及时掌握销售情况。同时,在日益复杂的数据和系统压力面前,报表团队也逐渐成为了管理上的瓶颈。

面对销售增长率的下降,该公司往往会找到咨询公司,从消费者分析入手,对产品结构\品牌策略\业务布局进行战略上的调整,以寻求增长之道。但这种方式成本太过高昂,而且在实际执行中往往存在很多桎梏。

解决方案

基于DH Data Connector Framework(数据连接器框架),整合DMS、CRM等几大业务系统,构建统一、实时的数据分析平台;

建立全局业务看板,实时掌握整体销售额、利润、成本、库存等关键指标,通过全维度数据下钻,分析销售变化趋势,探寻销售增长点;

建立RD晨会看板,向各级销售人员及时传递各项关键数据,包括本月销售完成情况、销售目标完成率、店点分销情况等销售数据,以及在店时间、拜访数等行为数据,支撑销售及管理人员的日常工作;

根据该公司的管理层和销售团队组织架构,设置权限分配,满足各级人员查看和分析数据。

以上内容由DataHunter整理提供

大数据营销的主要价值源于以下十个方面。

1、用户行为与特征分析

显然,只要积累足够的用户数据,就能分析出用户的喜好与购买习惯,甚至做到“比用户更了解用户自己”。有了这一点,才是许多大数据营销的前提与出发点。无论如何,那些过去将“一切以客户为中心”作为口号的企业可以想想,过去你们真的能及时全面地了解客户的需求与所想吗?或许只有大数据时代这个问题的答案才更明确。

2、精准营销信息推送支撑

过去多少年了,精准营销总在被许多公司提及,但是真正做到的少之又少,反而是垃圾信息泛滥。究其原因,主要就是过去名义上的精准营销并不怎么精准,因为其缺少用户特征数据支撑及详细准确的分析。相对而言,现在的RTB广告等应用则向我们展示了比以前更好的精准性,而其背后靠的即是大数据支撑。

3、引导产品及营销活动投用户所好

如果能在产品生产之前了解潜在用户的主要特征,以及他们对产品的期待,那么你的产品生产即可投其所好。例如,Netflix在近投拍《纸牌屋》之前,即通过大数据分析知道了潜在观众最喜欢的导演与演员,结果果然捕获了观众的心。又比如,《小时代》在预告片投放后,即从微博上通过大数据分析得知其电影的主要观众群为90后女性,因此后续的营销活动则主要针对这些人群展开。

4、竞争对手监测与品牌传播

竞争对手在干什么是许多企业想了解的,即使对方不会告诉你,但你却可以通过大数据监测分析得知。品牌传播的有效性亦可通过大数据分析找准方向。例如,可以进行传播趋势分析、内容特征分析、互动用户分析、正负情绪分类、口碑品类分析、产品属性分布等,可以通过监测掌握竞争对手传播态势,并可以参考行业标杆用户策划,根据用户声音策划内容,甚至可以评估微博矩阵运营效果。

5、品牌危机监测及管理支持

新媒体时代,品牌危机使许多企业谈虎色变,然而大数据可以让企业提前有所洞悉。在危机爆发过程中,最需要的是跟踪危机传播趋势,识别重要参与人员,方便快速应对。大数据可以采集负面定义内容,及时启动危机跟踪和报警,按照人群社会属性分析,聚类事件过程中的观点,识别关键人物及传播路径,进而可以保护企业、产品的声誉,抓住源头和关键节点,快速有效地处理危机。

6、企业重点客户筛选

许多企业家纠结的事是:在企业的用户、好友与粉丝中,哪些是最有价值的用户?有了大数据,或许这一切都可以更加有事实支撑。从用户访问的各种网站可判断其最近关心的东西是否与你的企业相关;从用户在社会化媒体上所发布的各类内容及与他人互动的内容中,可以找出千丝万缕的信息,利用某种规则关联及综合起来,就可以帮助企业筛选重点的目标用户。

7、大数据用于改善用户体验

要改善用户体验,关键在于真正了解用户及他们所使用的你的产品的状况,做最适时的提醒。例如,在大数据时代或许你正驾驶的汽车可提前救你一命。只要通过遍布全车的传感器收集车辆运行信息,在你的汽车关键部件发生问题之前,就会提前向你或4S店预警,这决不仅仅是节省金钱,而且对保护生命大有裨益。事实上,美国的UPS快递公司早在2000年就利用这种基于大数据的预测性分析系统来检测全美60000辆车辆的实时车况,以便及时地进行防御性修理。

8、SCRM中的客户分级管理支持

面对日新月异的新媒体,许多企业想通过对粉丝的公开内容和互动记录分析,将粉丝转化为潜在用户,激活社会化资产价值,并对潜在用户进行多个维度的画像。大数据可以分析活跃粉丝的互动内容,设定消费者画像各种规则,关联潜在用户与会员数据,关联潜在用户与客服数据,筛选目标群体做精准营销,进而可以使传统客户关系管理结合社会化数据,丰富用户不同维度的标签,并可动态更新消费者生命周期数据,保持信息新鲜有效。

9、发现新市场与新趋势

基于大数据的分析与预测,对于企业家提供洞察新市场与把握经济走向都是极大的支持。例如,阿里巴巴从大量交易数据中更早地发现了国际金融危机的到来。又如,在2012年美国总统选举中,微软研究院的DavidRothschild就曾使用大数据模型,准确预测了美国50个州和哥伦比亚特区共计51个选区中50个地区的选举结果,准确性高于98%。之后,他又通过大数据分析,对第85届届奥斯卡各奖项的归属进行了预测,除最佳导演外,其它各项奖预测全部命中。

10、市场预测与决策分析支持

对于数据对市场预测及决策分析的支持,过去早就在数据分析与数据挖掘盛行的年代被提出过。沃尔玛著名的“啤酒与尿布”案例即是那时的杰作。只是由于大数据时代上述Volume(规模大)及Variety(类型多)对数据分析与数据挖掘提出了新要求。更全面、速度更及时的大数据,必然对市场预测及决策分析进一步上台阶提供更好的支撑。要知道,似是而非或错误的、过时的数据对决策者而言简直就是灾难。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/9105336.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存