蜂群算法与人工蜂群算法有什么的区别吗

蜂群算法与人工蜂群算法有什么的区别吗,第1张

都是一样的,为什么有的会带上“人工”呢只是因为这些只能算法都是“人”仿照动物行为而创造的,所以有时候才会带上“人工”两个字但是指的是一个东西

例如神经网络,也有人喜欢说是人工神经网络

(以下描述,均不是学术用语,仅供大家快乐的阅读)

在分类之前,我们先列举一下常见的优化算法(不然我们拿什么分类呢?)。

1遗传算法Genetic algorithm

2粒子群优化算法Particle Swarm Optimization

3差分进化算法Differential Evolution

4人工蜂群算法Artificial Bee Colony

5蚁群算法Ant Colony Optimization

6人工鱼群算法Artificial Fish Swarm Algorithm

7杜鹃搜索算法Cuckoo Search

8萤火虫算法Firefly Algorithm

9灰狼算法Grey Wolf Optimizer

10鲸鱼算法Whale Optimization Algorithm

11群搜索算法Group search optimizer

12混合蛙跳算法Shuffled Frog Leaping Algorithm

13烟花算法fireworks algorithm

14菌群优化算法Bacterial Foraging Optimization

以上优化算法是我所接触过的算法,没接触过的算法不能随便下结论,知之为知之,不知为不知。其实到目前为止优化算法可能已经有几百种了,我们不可能也不需要全面的了解所有的算法,而且优化算法之间也有较大的共性,深入研究几个之后再看其他优化算法上手速度会灰常的快。

优化算法从提出到现在不过50-60年(遗传算法1975年提出),虽种类繁多但大多较为相似,不过这也很正常,比较香蕉和人的基因相似度也有50%-60%。当然算法之间的相似度要比香蕉和人的相似度更大,毕竟人家都是优化算法,有着相同的目标,只是实现方式不同。就像条条大路通罗马,我们可以走去,可以坐汽车去,可以坐火车去,也可以坐飞机去,不管使用何种方式,我们都在去往罗马的路上,也不会说坐飞机去要比走去更好,交通工具只是一个工具,最终的方案还是要看我们的选择。

上面列举了一些常见的算法,即使你一个都没见过也没关系,后面会对它们进行详细的介绍,但是对后面的分类可能会有些许影响,不过问题不大,就先当总结看了。

再对优化算法分类之前,先介绍一下算法的模型,在笔记(一)中绘制了优化算法的流程,不过那是个较为简单的模型,此处的模型会更加复杂。上面说了优化算法有较大的相似性,这些相似性主要体现在算法的运行流程中。

优化算法的求解过程可以看做是一个群体的生存过程。

有一群原始人,他们要在野外中寻找食物,一个原始人是这个群体中的最小单元,他们的最终目标是寻找这个环境中最容易获取食物的位置,即最易存活下来的位置。每个原始人都去独自寻找食物,他们每个人每天获取食物的策略只有采集果实、制作陷阱或者守株待兔,即在一天之中他们不会改变他们的位置。在下一天他们会根据自己的策略变更自己的位置。到了某一天他们又聚在了一起,选择了他们到过的最容易获取食物的位置定居。

一群原始人=优化算法中的种群、群体;

一个原始人=优化算法中的个体;

一个原始人的位置=优化算法中个体的位置、基因等属性;

原始人变更位置=优化算法中总群的更新 *** 作;

该位置获取食物的难易程度=优化算法中的适应度函数;

一天=优化算法中的一个迭代;

这群原始人最终的定居位置=优化算法所得的解。

优化算法的流程图如下:

对优化算法分类得有个标准,按照不同的标准分类也会得到不一样的结果。首先说一下我所使用的分类标准(动态更新,有了新的感悟再加):

按由来分类比较好理解,就是该算法受何种现象启发而发明,本质是对现象分类。

可以看出算法根据由来可以大致分为有人类的理论创造而来,向生物学习而来,受物理现象启发。其中向生物学习而来的算法最多,其他类别由于举例有偏差,不是很准确,而且物理现象也经过人类总结,有些与人类现象相交叉,但仍将其独立出来。

类别分好了,那么为什么要这么分类呢?

当然是因为要凑字数啦,啊呸,当然是为了更好的理解学习这些算法的原理及特点。

向动物生存学习而来的算法一定是一种行之有效的方法,能够保证算法的效率和准确性,因为,如果使用该策略的动物无法存活到我们可以对其进行研究,我们也无法得知其生存策略。(而这也是一种幸存者偏差,我们只能看到行之有效的策略,但并不是我们没看到的策略都是垃圾,毕竟也发生过小行星撞地球这种小概率毁灭性事件。讲个冷笑话开cou心zhi一shu下:一只小恐龙对他的小伙伴说,好开心,我最喜欢的那颗星星越来越亮了(完)。)但是由于生物的局限性,人们所创造出的算法也会有局限性:我们所熟知的生物都生存在三维空间,在这些环境中,影响生物生存的条件比较有限,反应到算法中就是这些算法在解决较低维度的问题时效果很好,当遇到超高维(维度>500)问题时,结果可能不容乐观,没做过实验,我也不敢乱说。

按更新过程分类相对复杂一点,主要是根据优化算法流程中更新位置 *** 作的方式来进行分类。更新位置的 *** 作按我的理解可大致分为两类:1跟随最优解;2不跟随最优解。

还是上面原始人的例子,每天他有一次去往其他位置狩猎的机会,他们采用何种方式来决定今天自己应该去哪里呢?

如果他们的策略是“跟随最优解”,那么他们选取位置的方式就是按一定的策略向群体已知的最佳狩猎位置(历史最佳)或者是当前群体中的最佳狩猎位置(今天最佳)靠近,至于是直线跑过去还是蛇皮走位绕过去,这个要看他们群体的策略。当然,他们的目的不是在最佳狩猎位置集合,他们的目的是在过去的途中看是否能发现更加好的狩猎位置,去往已经到过的狩猎地点再次狩猎是没有意义的,因为每个位置获取食物的难易程度是固定的。有了目标,大家都会朝着目标前进,总有一日,大家会在谋个位置附近相聚,相聚虽好但不利于后续的觅食容易陷入局部最优。

什么是局部最优呢?假设在当前环境中有一“桃花源”,拥有上帝视角的我们知道这个地方就是最适合原始人们生存的,但是此地入口隐蔽“山有小口,仿佛若有光”、“初极狭,才通人。”,是一个难以发现的地方。如果没有任何一个原始人到达了这里,大家向着已知的最优位置靠近时,也难以发现这个“桃源之地”,而当大家越聚越拢之后,“桃源”被发现的可能性越来越低。虽然原始人们得到了他们的解,但这并不是我们所求的“桃源”,他们聚集之后失去了寻求“桃源”的可能,这群原始人便陷入了局部最优。

如果他们的策略是“不跟随最优解”,那么他们的策略是什么呢?我也不知道,这个应该他们自己决定。毕竟“是什么”比“不是什么”的范围要小的多。总之不跟随最优解时,算法会有自己特定的步骤来更新个体的位置,有可能是随机在自己附近找,也有可能是随机向别人学习。不跟随最优解时,原始人们应该不会快速聚集到某一处,这样一来他们的选择更具多样性。

按照更新过程对上面的算法分类结果如下

可以看出上面不跟随最优解的算法只有遗传算法和差分进化算法,他们的更新策略是与进化和基因的重组有关。因此这些不跟随最优解的算法,他们大多依据进化理论更新位置(基因)我把他们叫做进化算法,而那些跟随群体最优解的算法,他们则大多依赖群体的配合协作,我把这些算法叫做群智能算法。

目前我只总结了这两种,分类方法,如果你有更加优秀的分类方法,我们可以交流一下:

目录

上一篇 优化算法笔记(一)优化算法的介绍

下一篇 优化算法笔记(三)粒子群算法(1)

(以下描述,均不是学术用语,仅供大家快乐的阅读)

差分进化算法(Differential Evolution Algorithm,DE)是一种基于群体的进化算法,它模拟了群体中的个体的合作与竞争的过程。算法原理简单,控制参数少,只有交叉概率和缩放比例因子,鲁棒性强,易于实现。

差分进化算法中,每一个个体的基因表示待求问题的一个候选解。每次迭代将先进行变异 *** 作,选择一个或多个个体的基因作为基,然后选择不同的个体的差分来构成差分基因,最后将作为基的基因与差分基因相加来得出新的个体。交叉 *** 作将新的个体将于父代的对应个体交叉,然后进行选择 *** 作,比较交叉后的个体与父代的对应个体,选择较优的个体保留至下一代。在迭代完成之后将选择种群中最优个体的基因作为解。

差分进化算法可以算是我所使用过的优化算法中大魔王级别的算法,虽然它每个方面都没有强到离谱,但是综合起来的效果好于大多数算法。它就像一个每个科目都能考到90分(百分制)的学生,虽然没门课都不是最优秀的,但是论综合,论总分,它有极大的概率是第一名。

在我研究优化算法的小路上,我的目标就是找到一个能打败大魔王或是能在大多数方面压制魔王的算法。

这次的主角就选魔王军吧(或者蚁王军,为了与蚁群算法区别还是叫魔王军吧),个体则称之为魔王兵。

魔王兵的能力取决于它们的基因,它们可以根据环境或者需要改变自己的基因使得自己更加强大,更方便的处理问题,问题的维度与基因维度相同。

表示第i个魔王兵在进化了第t次后的基因,该个体有D位基因。

与遗传算法同为进化算法的差分进化算法,它们的 *** 作(算子)也都非常相似的,都是交叉,变异和选择,流程也几乎一样(遗传算法先交叉后变异,差分进化算法先变异后交叉)。

说到差分进化算法中的变异,我就想到一句论语 “三人行,必有我师焉。择其善者而从之,其不善者而改之。” ,其实这句论语已经向我们说明了差分进化算法的整个流程:

“三人行,必有我师焉”——变异,交叉。

“择其善者而从之,其不善者而改之”——选择。

差分进化算法中,当一个魔王兵变异时,它会先找来3个小伙伴,当然是随机找来3个小伙伴,避免同化。在一个小伙伴的基因上加上另外两个小伙伴基因之差作为自己的目标基因。其变异公式如下:

表示第i个魔王兵找到了编号为r1、r2和r3的三个魔王兵,当然了i、r1、r2、r3为互不相同的整数,F为缩放比例因子,通常 ,一般取F=05。 为第i个魔王兵交叉后的目标基因图纸,不过这是个半成品,再经过交叉后,目标基因图纸才算完成。

其实现在我们已经有了5个基因图纸了 ,接下来将进行交叉 *** 作。由于变异 *** 作,差分进化算法的种群中个体数至少为4,即魔王军中至少有4个小兵。

交叉 *** 作中,魔王兵i会将目标基因图纸 进行加工得到 ,加工过程如下:

其中 。 为交叉概率,其值越大,发生交叉的概率越大,一般取 。 为{1,2,…,D}中的随机整数,其作用是保证交叉 *** 作中至少有一维基因来自变异 *** 作产生的基因,不能让交叉 *** 作的努力白费。

从公式上可以看出交叉 *** 作实际上是从变异 *** 作得出的基因图纸上选择至少一位基因来替换自己的等位基因,得到最终的基因图纸。

选择 *** 作相对简单,魔王兵i拿到了最终的基因图纸 ,大喊一声,进化吧,魔王兵i的基因改变了。它拿出了能力测量器fitness function,如果发现自己变强了,那么就将基因 保留到下一代,否则它选择放弃进化,让自己还原成 。

实验又来啦,还是那个实验 ,简单、易算、好画图。

实验1 :参数如下

图中可以看出在第20代时,群体已经非常集中了,在来看看最终得出的结果。

这结果真是好到令人发指,恶魔在心中低语“把其他的优化算法都丢掉吧”。不过别往心里去,任何算法都有优缺点,天下没有免费的午餐,要想获得某种能力必须付出至少相应的代价。

实验2:

将交叉率CR设为0,即每次交叉只选择保留一位变异基因。

看看了看图,感觉跟实验1中相比没有什么变化,那我们再来看看结果。

结果总体来说比实验1好了一个数量级。为什么呢?个人感觉应该是每次只改变一位基因的局部搜索能力比改变多位基因更强。下面我们将交叉率CR设为1来看看是否是这样。

实验3:

将交叉率CR设为1,即每次交叉只选择保留一位原有基因。

实验3的图与实验1和实验2相比好像也没什么差别,只是收敛速度好像快了那么一点点。再来看看结果。

发现结果比实验2的结果还要好?那说明了实验2我得出的结论是可能是错误的,交叉率在该问题上对差分进化算法的影响不大,它们结果的差异可能只是运气的差异,毕竟是概率算法。

实验4:

将变异放缩因子设为0,即变异只与一个个体有关。

收敛速度依然很快,不过怎么感觉结果不对,而且个体收敛的路径好像遗传算法,当F=0,时,差分进化算法退化为了没有变异、选择 *** 作的遗传算法,结果一定不会太好。

果然如此。下面我们再看看F=2时的实验。

实验5:

将变异放缩因子设为2。

实验5的图可以明显看出,群体的收敛速度要慢了许多,到第50代时,种群还未完全收敛于一点,那么在50代时其结果也不会很好,毕竟算法还未收敛就停止进化了。

结果不算很好但也算相对稳定。

通过上面5个实验,我们大致了解了差分进化算法的两个参数的作用。

交叉率CR,影响基因取自变异基因的比例,由于至少要保留一位自己的基因和变异的基因导致CR在该问题上对算法性能的影响不大(这个问题比较简单,维度较低,影响不大)。

变异放缩因子F,影响群体的收敛速度,F越大收敛速度越慢,F绝对值越小收敛速度越快,当F=0是群体之间只会交换基因,不会变异基因。

差分进化算法大魔王已经如此强大了,那么还有什么可以改进的呢?当然有下面一一道来。

方案1 将3人行修改为5人行,以及推广到2n+1人行。

实验6:

将3人行修改为5人行,变异公式如下:

五人行的实验图看起来好像与之前并没有太大的变化,我们再来看看结果。

结果没有明显提升,反而感觉比之前的结果差了。反思一下五人行的优缺点,优点,取值范围更大,缺点,情况太多,减慢搜索速度。

可以看出算法的收敛速度比之前的变慢了一点,再看看结果。

比之前差。

差分进化算法的学习在此也告一段落。差分进化算法很强大,也很简单、简洁,算法的描述都充满了美感,不愧是大魔王。不过这里并不是结束,这只是个开始,终将找到打败大魔王的方法,让新的魔王诞生。

由于差分进化算法足够强,而文中实验的问题较为简单导致算法的改进甚至越改越差(其实我也不知道改的如何,需要大量实验验证)。在遥远的将来,也会有更加复杂的问题来检验魔王的能力,总之,后会无期。

以下指标纯属个人yy,仅供参考

目录

上一篇 优化算法笔记(六)遗传算法

下一篇 优化算法笔记(八)人工蜂群算法

优化算法matlab实现(七)差分进化算法matlab实现

以上就是关于蜂群算法与人工蜂群算法有什么的区别吗全部的内容,包括:蜂群算法与人工蜂群算法有什么的区别吗、优化算法笔记(二)优化算法的分类、优化算法笔记(七)差分进化算法等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/9386700.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-27
下一篇 2023-04-27

发表评论

登录后才能评论

评论列表(0条)

保存