遗传算法在很多领域都得到应用;从神经网络研究的角度上考虑,最关心的是遗传算法在神经网络的应用。在遗传算法应用中,应先明确其特点和关键问题,才能对这种算法深入了解,灵活应用,以及进一步研究开发。
一、遗传算法的特点
1.遗传算法从问题解的中集开始嫂索,而不是从单个解开始。
这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,复盖面大,利于全局择优。
2.遗传算法求解时使用特定问题的信息极少,容易形成通用算法程序。
由于遗传算法使用适应值这一信息进行搜索,并不需要问题导数等与问题直接相关的信息。遗传算法只需适应值和串编码等通用信息,故几乎可处理任何问题。
3.遗传算法有极强的容错能力
遗传算法的初始串集本身就带有大量与最优解甚远的信息;通过选择、交叉、变异 *** 作能迅速排除与最优解相差极大的串;这是一个强烈的滤波过程;并且是一个并行滤波机制。故而,遗传算法有很高的容错能力。
4.遗传算法中的选择、交叉和变异都是随机 *** 作,而不是确定的精确规则。
这说明遗传算法是采用随机方法进行最优解搜索,选择体现了向最优解迫近,交叉体现了最优解的产生,变异体现了全局最优解的复盖。
5.遗传算法具有隐含的并行性
遗传算法的基础理论是图式定理。它的有关内容如下:
(1)图式(Schema)概念
一个基因串用符号集{0,1,}表示,则称为一个因式;其中可以是0或1。例如:H=1x x 0 x x是一个图式。
(2)图式的阶和长度
图式中0和1的个数称为图式的阶,并用0(H)表示。图式中第1位数字和最后位数字间的距离称为图式的长度,并用δ(H)表示。对于图式H=1x x0x x,有0(H)=2,δ(H)=4。
(3)Holland图式定理
低阶,短长度的图式在群体遗传过程中将会按指数规律增加。当群体的大小为n时,每代处理的图式数目为0(n3)。
遗传算法这种处理能力称为隐含并行性(Implicit Parallelism)。它说明遗传算法其内在具有并行处理的特质。
二、遗传算法的应用关键
遗传算法在应用中最关键的问题有如下3个
1.串的编码方式
这本质是问题编码。一般把问题的各种参数用二进制编码,构成子串;然后把子串拼接构成“染色体”串。串长度及编码形式对算法收敛影响极大。
2.适应函数的确定
适应函数(fitness function)也称对象函数(object function),这是问题求解品质的测量函数;往往也称为问题的“环境”。一般可以把问题的模型函数作为对象函数;但有时需要另行构造。
3.遗传算法自身参数设定
遗传算法自身参数有3个,即群体大小n、交叉概率Pc和变异概率Pm。
群体大小n太小时难以求出最优解,太大则增长收敛时间。一般n=30-160。交叉概率Pc太小时难以向前搜索,太大则容易破坏高适应值的结构。一般取Pc=025-075。变异概率Pm太小时难以产生新的基因结构,太大使遗传算法成了单纯的随机搜索。一般取Pm=0.01—0.2。
三、遗传算法在神经网络中的应用
遗传算法在神经网络中的应用主要反映在3个方面:网络的学习,网络的结构设计,网络的分析。
1.遗传算法在网络学习中的应用
在神经网络中,遗传算法可用于网络的学习。这时,它在两个方面起作用
(1)学习规则的优化
用遗传算法对神经网络学习规则实现自动优化,从而提高学习速率。
(2)网络权系数的优化
用遗传算法的全局优化及隐含并行性的特点提高权系数优化速度。
2.遗传算法在网络设计中的应用
用遗传算法设计一个优秀的神经网络结构,首先是要解决网络结构的编码问题;然后才能以选择、交叉、变异 *** 作得出最优结构。编码方法主要有下列3种:
(1)直接编码法
这是把神经网络结构直接用二进制串表示,在遗传算法中,“染色体”实质上和神经网络是一种映射关系。通过对“染色体”的优化就实现了对网络的优化。
(2)参数化编码法
参数化编码采用的编码较为抽象,编码包括网络层数、每层神经元数、各层互连方式等信息。一般对进化后的优化“染色体”进行分析,然后产生网络的结构。
(3)繁衍生长法
这种方法不是在“染色体”中直接编码神经网络的结构,而是把一些简单的生长语法规则编码入“染色体”中;然后,由遗传算法对这些生长语法规则不断进行改变,最后生成适合所解的问题的神经网络。这种方法与自然界生物地生长进化相一致。
3.遗传算法在网络分析中的应用
遗传算法可用于分析神经网络。神经网络由于有分布存储等特点,一般难以从其拓扑结构直接理解其功能。遗传算法可对神经网络进行功能分析,性质分析,状态分析。
遗传算法虽然可以在多种领域都有实际应用,并且也展示了它潜力和宽广前景;但是,遗传算法还有大量的问题需要研究,目前也还有各种不足。首先,在变量多,取值范围大或无给定范围时,收敛速度下降;其次,可找到最优解附近,但无法精确确定最扰解位置;最后,遗传算法的参数选择尚未有定量方法。对遗传算法,还需要进一步研究其数学基础理论;还需要在理论上证明它与其它优化技术的优劣及原因;还需研究硬件化的遗传算法;以及遗传算法的通用编程和形式等。
把下面的(1)-(7)依次存成相应的m文件,在(7)的m文件下运行就可以了
(1) 适应度函数fitm
function fitness=fit(len,m,maxlen,minlen)
fitness=len;
for i=1:length(len)
fitness(i,1)=(1-(len(i,1)-minlen)/(maxlen-minlen+00001))^m;
end
(2)个体距离计算函数 mylengthm
function len=myLength(D,p)
[N,NN]=size(D);
len=D(p(1,N),p(1,1));
for i=1:(N-1)
len=len+D(p(1,i),p(1,i+1));
end
end
(3)交叉 *** 作函数 crossm
function [A,B]=cross(A,B)
L=length(A);
if L<10
W=L;
elseif ((L/10)-floor(L/10))>=rand&&L>10
W=ceil(L/10)+8;
else
W=floor(L/10)+8;
end
p=unidrnd(L-W+1);
fprintf('p=%d ',p);
for i=1:W
x=find(A==B(1,p+i-1));
y=find(B==A(1,p+i-1));
[A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1));
[A(1,x),B(1,y)]=exchange(A(1,x),B(1,y));
end
end
(4)对调函数 exchangem
function [x,y]=exchange(x,y)
temp=x;
x=y;
y=temp;
end
(5)变异函数 Mutationm
function a=Mutation(A)
index1=0;index2=0;
nnper=randperm(size(A,2));
index1=nnper(1);
index2=nnper(2);
%fprintf('index1=%d ',index1);
%fprintf('index2=%d ',index2);
temp=0;
temp=A(index1);
A(index1)=A(index2);
A(index2)=temp;
a=A;
end
(6)连点画图函数 plot_routem
function plot_route(a,R)
scatter(a(:,1),a(:,2),'rx');
hold on;
plot([a(R(1),1),a(R(length(R)),1)],[a(R(1),2),a(R(length(R)),2)]);
hold on;
for i=2:length(R)
x0=a(R(i-1),1);
y0=a(R(i-1),2);
x1=a(R(i),1);
y1=a(R(i),2);
xx=[x0,x1];
yy=[y0,y1];
plot(xx,yy);
hold on;
end
end
(7)主函数
clear;
clc;
%%%%%%%%%%%%%%%输入参数%%%%%%%%
N=50; %%城市的个数
M=100; %%种群的个数
C=100; %%迭代次数
C_old=C;
m=2; %%适应值归一化淘汰加速指数
Pc=04; %%交叉概率
Pmutation=02; %%变异概率
%%生成城市的坐标
pos=randn(N,2);
%%生成城市之间距离矩阵
D=zeros(N,N);
for i=1:N
for j=i+1:N
dis=(pos(i,1)-pos(j,1))^2+(pos(i,2)-pos(j,2))^2;
D(i,j)=dis^(05);
D(j,i)=D(i,j);
end
end
%%如果城市之间的距离矩阵已知,可以在下面赋值给D,否则就随机生成
%%生成初始群体
popm=zeros(M,N);
for i=1:M
popm(i,:)=randperm(N);
end
%%随机选择一个种群
R=popm(1,:);
figure(1);
scatter(pos(:,1),pos(:,2),'rx');
axis([-3 3 -3 3]);
figure(2);
plot_route(pos,R); %%画出种群各城市之间的连线
axis([-3 3 -3 3]);
%%初始化种群及其适应函数
fitness=zeros(M,1);
len=zeros(M,1);
for i=1:M
len(i,1)=myLength(D,popm(i,:));
end
maxlen=max(len);
minlen=min(len);
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
R=popm(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
fitness=fitness/sum(fitness);
distance_min=zeros(C+1,1); %%各次迭代的最小的种群的距离
while C>=0
fprintf('迭代第%d次\n',C);
%%选择 *** 作
nn=0;
for i=1:size(popm,1)
len_1(i,1)=myLength(D,popm(i,:));
jc=rand03;
for j=1:size(popm,1)
if fitness(j,1)>=jc
nn=nn+1;
popm_sel(nn,:)=popm(j,:);
break;
end
end
end
%%每次选择都保存最优的种群
popm_sel=popm_sel(1:nn,:);
[len_m len_index]=min(len_1);
popm_sel=[popm_sel;popm(len_index,:)];
%%交叉 *** 作
nnper=randperm(nn);
A=popm_sel(nnper(1),:);
B=popm_sel(nnper(2),:);
for i=1:nnPc
[A,B]=cross(A,B);
popm_sel(nnper(1),:)=A;
popm_sel(nnper(2),:)=B;
end
%%变异 *** 作
for i=1:nn
pick=rand;
while pick==0
pick=rand;
end
if pick<=Pmutation
popm_sel(i,:)=Mutation(popm_sel(i,:));
end
end
%%求适应度函数
NN=size(popm_sel,1);
len=zeros(NN,1);
for i=1:NN
len(i,1)=myLength(D,popm_sel(i,:));
end
maxlen=max(len);
minlen=min(len);
distance_min(C+1,1)=minlen;
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
fprintf('minlen=%d\n',minlen);
R=popm_sel(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
popm=[];
popm=popm_sel;
C=C-1;
%pause(1);
end
figure(3)
plot_route(pos,R);
axis([-3 3 -3 3]);
新建一个函数
baidu_fm
function
f=baidu_f(x)
f=05-((sin(sqrt(x(1)^2+x(2)^2)))^2-05)/(1+0001(x(1)^2+x(2)^2)^2)
然后用fmins函数寻找极值。
x
=
fmins('baidu_f',
[0
0],
[2
2]);
另外你的语句中有错,少写了一个括号,你再自己检查一下。
主程序代码如下。主文件其它代码及调用的其它函数详见私信压缩包。
for n=0:19;
x=linspace(0,60);
y1=tan(x);
y2=1/x;
figure(1);
plot(x,y1,'r',x,y2,'b')
title('函数曲线图')
xlabel('x')
ylabel('y')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%主程序%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
global BitLength %全局变量,计算如果满足求解精度至少需要编码的长度
global boundsbegin %全局变量,自变量的起始点
global boundsend %全局变量,自变量的终止点
bounds=[pi/22n pi/2(2n+1)]; %一维自变量的取值范围
precision=00001; %运算精度
boundsbegin=bounds(:,1);
boundsend=bounds(:,2); %计算如果满足求解精度至少需要多长的染色体
BitLength=ceil(log2((boundsend-boundsbegin)' / precision));
popsize=60; %初始种群大小
Generationnmax=50; %最大代数
pcrossover=09999; %交配概率
pmutation=00001; %变异概率
population=round(rand(popsize,BitLength)); %初始种群,行代表一个个体,列代表不同个体
%计算适应度
[Fitvalue,cumsump]=fitnessfun(population); %输入群体population,返回适应度Fitvalue和累积概率cumsump
Generation=1;
while Generation<(Generationnmax+1)
for j=1:2:popsize %1对1对的群体进行如下 *** 作(交叉,变异)
%选择
seln=selection(population,cumsump);
%交叉
scro=crossover(population,seln,pcrossover);
scnew(j,:)=scro(1,:);
scnew(j+1,:)=scro(2,:);
%变异
smnew(j,:)=mutation(scnew(j,:),pmutation);
smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);
end
%产生了新的种群
population=smnew;
%计算新种群的适应度
[Fitvalue,cumsump]=fitnessfun(population); %记录当前代最好的适应度和平均适应度
[fmax,nmax]=max(Fitvalue); %最好的适应度为fmax(即函数值最大),其对应的个体为nmax
fmean=mean(Fitvalue); %平均适应度为fmean
ymax(Generation)=fmax; %每代中最好的适应度
ymean(Generation)=fmean; %每代中的平均适应度
%记录当前代的最佳染色体个体
x=transform2to10(population(nmax,:));%population(nmax,:)为最佳染色体个体
xx=boundsbegin+x(boundsend-boundsbegin)/(power(2,BitLength)-1);
xmax(Generation)=xx;
Generation=Generation+1;
end
Generation=Generation-1;%Generation加1、减1的 *** 作是为了能记录各代中的最佳函数值xmax(Generation)
targetfunvalue=targetfun(xmax);
[Besttargetfunvalue,nmax]=max(targetfunvalue);
Bestpopulation=xmax(nmax)
%绘制经过遗传运算后的适应度曲线
figure(2);
hand1=plot(1:Generation,ymax);
set(hand1,'linestyle','-','linewidth',1,'marker','','markersize',8)
hold on;
hand2=plot(1:Generation,ymean);
set(hand2,'color','k','linestyle','-','linewidth',1, 'marker','h','markersize',8)
xlabel('进化代数');
ylabel('最大和平均适应度');
xlim([1 Generationnmax]);
legend('最大适应度','平均适应度');
box off;
hold off;
end
%%%%%%%%%%%计算适应度函数%%%%%%%%%%%%%%%%%%%%%%%%
[Fitvalue,cumsump]=fitnessfun(population);
global BitLength
global boundsbegin
global boundsend
popsize=size(population,1); %计算个体个数
for i=1:popsize
x=transform2to10(population(i,:)); %将二进制转换为十进制
%转化为[-2,2]区间的实数
xx=boundsbegin+x(boundsend-boundsbegin)/(power(2,BitLength)-1);
Fitvalue(i)=targetfun(xx); %计算函数值,即适应度
end
%给适应度函数加上一个大小合理的数以便保证种群适应值为正数
Fitvalue=Fitvalue'+230; %该处还有一个作用就是决定适应度是有利于选取几个有利个体(加强竞争),海深减弱竞争
%计算选择概率
fsum=sum(Fitvalue) ;
Pperpopulation=Fitvalue/fsum ; %适应度归一化,及被复制的概率
%计算累积概率
cumsump(1)=Pperpopulation(1) ;
for i=2:popsize
cumsump(i)=cumsump(i-1)+Pperpopulation(i); %求累计概率
end
cumsump=cumsump' ; %累计概率
以上就是关于遗传算法求解全部的内容,包括:遗传算法求解、遗传算法求解tsp问题的matlab程序、基于Matlab的函数优化遗传算法程序等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)