cnc4轴气刹原理

cnc4轴气刹原理,第1张

CNC四轴气刹是指一种通过气压控制的夹紧机构,可以用于数控车床等加工设备上的工件夹紧。其原理主要包括以下几个方面:

1 气压源:CNC四轴气刹需要接入气压源,通过气路系统将气体送到夹紧器内部产生压力,从而实现夹紧工件的目的。

2 气缸:夹紧器内部通常包括一个或多个气缸,通过气路系统控制气缸活塞的运动,从而产生夹紧力。

3 夹紧爪:气缸通过推动夹紧爪的运动来夹紧工件,使其不会滑动或旋转。

4 控制系统:通过控制夹紧器与气路系统之间的控制阀门,以及控制气缸的运动方式来实现对CNC四轴气刹的控制。

总的来说,CNC四轴气刹是一种高效、可靠的夹紧装置,通过气压控制产生夹紧力,适用于各种工件的夹紧与固定。

四轴:三轴再加一个旋转轴 ,一般是 水平面 360°旋转。但不能高速旋转。

五轴:四轴再多一个,旋转轴 一般是直立面 360°旋转,但不能高速旋转。 这个轴 通常加在上下轴上面,也就是主轴上面。  五轴已经是可以全面加工了,可以一次装夹做雕像。

简介:

数控铣床是在一般铣床的基础上发展起来的一种自动加工设备,两者的加工工艺基本相同,结构也有些相似。数控铣床有分为不带刀库和带刀库两大类。其中带刀库的数控铣床又称为加工中心。

特点:

1、零件加工的适应性强、灵活性好,能加工轮廓形状特别复杂或难以控制尺寸的零件,如模具类零件、壳体类零件等;

2、能加工普通机床无法加工或很难加工的零件,如用数学模型描述的复杂曲线零件以及三维空间曲面类零件;

3、能加工一次装夹定位后,需进行多道工序加工的零件;

4、加工精度高、加工质量稳定可靠,数控装置的脉冲当量一般为0001mm,高精度的数控系统可达01μm,另外,数控加工还避免了 *** 作人员的 *** 作失误;

5、生产自动化程度高,可以减轻 *** 作者的劳动强度。有利于生产管理自动化;

6、生产效率高,数控铣床一般不需要使用专用夹具等专用工艺设备,在更换工件时只需调用存储于数控装置中的加工程序、装夹工具和调整刀具数据即可,因而大大缩短了生产周期。其次,数控铣床具有铣床、镗床、钻床的功能,使工序高度集中,大大提高了生产效率。另外,数控铣床的主轴转速和进给速度都是无级变速的,因此有利于选择最佳切削用量;

一、区别如下:

1、结构不同

三轴立式数控加工中心是三条不同方向直线运动的轴,分别是上下、左右和前后,上下的方向是主轴,可以高速旋转;四轴立式加工中心是在三轴的基础上增加了一个旋转轴,即水平面可以360度旋转,不可以高速旋转。

2、使用范围不同

三轴加工中心加工中心使用最为广泛,三轴加工中心能进行简单的平面加工,而且一次只能加工单面,三轴加工中心可以很好的加工、铝制、木质、消失模等材质。

四轴加工中心的使用较三轴加工中心少一些,它通过旋转可以使产品实现多面的加工,大大提高了加工效率,减少了装夹次数。尤其是圆柱类零件的加工多方便。并且可以减少工件的反复装夹,提高工件的整体加工精度,利于简化工艺,提高生产效率。缩短生产时间。

二、编程方法:

1、分析零件图样

根据零件图样,通过对零件的材料、形状、尺寸和精度、表面质量、毛坯情况和热处理等要求进行分析,明确加工内容和耍求,选择合适的数控机床。

此步骤内容包括:

1)确定该零件应安排在哪类或哪台机床上进行加工。

2)采用何种装夹具或何种装卡位方法。

3)确定采用何种刀具或采用多少把刀进行加工。

4)确定加工路线,即选择对刀点、程序起点(又称加工起点,加工起点常与对刀点重合)、走刀路线、程序终点(程序终点常与程序起点重合)。

5)确定切削深度和宽度、进给速度、主轴转速等切削参数。

2、确定工艺过程

在分析零件图样的基础上,确定零件的加工工艺(如确定定位方式、选用工装夹具等)和加工路线(如确定对刀点、走刀路线等),并确定切削用量。工艺处理涉及内容较多,主要有以下几点:

1)加工方法和工艺路线的确定 按照能充分发挥数控机床功能的原则,确定合理的加工方法和工艺路线。

2)刀具、夹具的设计和选择 数控加工刀具确定时要综合考虑加工方法、切削用量、工件材料等因素,满足调整方便、刚性好、精度高、耐用度好等要求。数控加工夹具设计和选用时,应能迅速完成工件的定位和夹紧过程,以减少辅助时间。

并尽量使用组合夹具,以缩短生产准备周期。此外,所用夹具应便于安装在机床上,便于协调工件和机床坐标系的尺寸关系。

3)对刀点的选择 对刀点是程序执行的起点,选择时应以简化程序编制、容易找正、在加工过程中便于检查、减小加工误差为原则。

对刀点可以设置在被加工工件上,也可以设置在夹具或机床上。为了提高零件的加工精度,对刀点应尽量设置在零件的设计基准或工艺基准上。

4)加工路线的确定 加工路线确定时要保证被加工零件的精度和表面粗糙度的要求;尽量缩短走刀路线,减少空走刀行程;有利于简化数值计算,减少程序段的数目和编程工作量。

5)切削用量的确定 切削用量包括切削深度、主轴转速及进给速度。切削用量的具体数值应根据数控机床使用说明书的规定、被加工工件材料、加工内容以及其它工艺要求,并结合经验数据综合考虑。

6)冷却液的确定 确定加工过程中是否需要提供冷却液、是否需要换刀、何时换刀。

由于数控加工中心上加工零件时工序十分集中在一次装夹下,往往需要完成粗加工、半精加工和精加工。在确定工艺过程时要周密合理地安排各工序的加工顺序,提高加工精度和生产效率。

3、数值计算

数值计算就是根据零件的几何尺寸和确定的加工路线,计算数控加工所需的输入数据。一般数控系统都具有直线插补、圆弧插补和刀具补偿功能。对形状简单的零件(如直线和圆弧组成的零件)的轮廓加工,计算几何元素的起点、终点,圆弧的圆心、两元素的交点或切点的坐标值等。

对形状复杂的零件(如非圆曲线、曲面组成的零件),用直线段或圆弧段通近,由精度要求计算出节点坐标值。这种情况需要借助计算机,使用相关软件进行计算。

4、编写加工程序

在完成工艺处理和数学处理工作后,应根据所使用机床的数控系统的指令、程序段格式、工艺过程、数值计算结果以及辅助 *** 作要求,按照数控系统规定的程序指令及格式要求,逐段编写零件加工程序。

编程前,编程人员要了解数控机床的性能、功能以及程序指令,才能编写出正确的数控加工程序。

5、程序输入

把编写好的程序,输入到数控系统中,常用的方法有以下两种:

1)在数控铣床 *** 作面板上进行手工输入;

2)利用DNC(数据传输)功能,先把程序录入计算机,再由专用的CNC传输软件把加工程序输入数控系统然后再调出执行或边传输边加工。

6、程序校验

编制好的程序,必须进行程序运行检查。加工程序一般应经过校验和试切削才能用于正式加工。可以采用空走刀、空运转画图等方式以检查机床运动轨迹与动作的正确性。

在具有图形显示功能和动态模拟功能的数控机床上或CAD/CAM软件中,用图形模拟刀具切削工件的方法进行检验更为方便。但这些方法只能检验出运动轨迹是否正确,不能检查被加工零件的加工精度。

四轴转台刹车是一种通过空气压力来控制四轴转台的刹车。当空气压力增加,刹车线圈就会被电流绕组,控制空气压力,实现四轴转台的刹车作用。当电流绕组在刹车线圈上,产生的磁力会把制动器拉紧,使四轴转台的转动受到抑制。

日本酒品牌及价格-来全米输了解日本酒价格

JRE全米输提供日本酒及日本稻米产品介绍。日本酒品牌及价格等相关资讯尽在JRE全米输。

全日本稻米及相关食广告

不扎针测血糖的仪器家用-上淘宝选好物,轻松下单,放心购物!

不扎针测血糖的仪器家用-淘宝热卖好物,大牌汇聚,畅享购物!热卖优质商品,淘你满意!

淘宝热卖广告

大家还在搜

钢琴陪练一对一

制砂机一套多少钱

妇科医生

电脑培训班价目表

发现老公有外遇最明智的怎么办

手机怎么定位跟踪

代入驻天猫

北京职业学校

返回

UG后处理

[分享] 分享一个发那科三轴、四轴程序(正常上机的后处理)

次代のせがい

2022-8-10 09:03:11

关注楼主

340526

该后处理为850刀臂式刀库,带备刀。备刀参数已设置在主程序里#600

后处理主要形式为:主程序+子程序的模式

后处理主要内容:1攻牙程序CAM为Q值,CAM空为则Q值不输出;

2攻牙刚性输出M29 S转速

3自带高精模式G051 Q1

4四轴联动后处理每条子 *** 作结束后自动抬刀至安全高度值;

5四轴定轴采用主程序+子程序,子程序为三轴程序,主程序根据MCS坐标名称输出旋转角度(MCS坐标设置:用途局部改为主要,且名字以A+角度);

6支持扩展坐标输出,负值为输出扩展坐标对应P值;

7自带备刀功能,备刀为主程序的#600

旋翼飞行器普及知识

决定多旋翼飞行器旋翼个数的,就是飞行器稳定性、几何尺寸和单发动力性能三者的平衡。

先说稳定性的影响。基本上,我们可以认为多旋翼飞行器的稳定性里,八旋翼>六旋翼>四旋翼。原因当然好解释,对于一个运动特性确定的飞行器来说,自然是能参与控制的量越多,越容易得到好的控制效果。四旋翼飞行器尚且是一个欠驱动系统。六旋翼飞行器的时候就已经是一个完全驱动系统了。复杂了是一回事,但是如果能获得比较好的效果,也是值得的。另外一个不容易注意到的好处是,旋翼数量较多的时候飞行器对于动力系统失效的容忍程度也会上升。毕竟多发飞行器一台发动机突然失效不是很罕见的情况。模型级别的飞行器,射桨也是常有的事。在这种情况下,八旋翼和六旋翼都可以承受双发/单发失效的状况,并且飞行器仍然可控。而如果是四旋翼飞行器的话,只要单发失效,除非旋翼上有周期变距,否则唯一的选择就有摔机了。

但旋翼的数量增加以后,会对飞行器的几何尺寸带来负面影响。因为旋翼数多了,自然每个旋翼之间的距离也会缩减。四轴飞行器每隔90度放置一个旋翼,六轴飞行器每隔60度放置一个旋翼,八轴飞行器每隔45度放置一个旋翼。假设相同拉力时几个旋翼的桨盘总面积相同,很容易得出几种结构形式需要的旋翼直径。

同样,多旋翼的旋翼位置在设计时也不能相互干涉。因此也很容易得出几种结构形式中旋翼中心距离飞行器几何中心距离。

很容易看出来,相比较旋翼直径的缩小,旋翼中心与飞行器几何中心的距离增加得更快。因此很不幸的,旋翼的数量越多,飞行器的尺寸也就会做得越大。而且,旋翼越多,多旋翼飞行器的折叠收纳就越是问题。六旋翼尚且可以折叠,八旋翼就一点办法也没有。即使是简单的拆掉旋翼支臂,旋翼数越多在现场组装需要花的时间也就越多。而且,由于多旋翼飞行器有旋翼安装顺序的要求。要安装的旋翼越多就意味着潜藏的出错可能越高。也因此,诸如军队等地方实际使用的多旋翼飞行器,几乎无例外都是四旋翼的形式。但如果你可以使用的动力组合单发动力性能有限,使用四轴的构型根本无法把设计起飞重量飞起来的话,就要增加旋翼个数。

说到这里,可能会有人说:不是有那种上下叠层的多旋翼飞行器么?就是在一个支臂上同时放置一组共轴反桨的动力组,这样的话不就可以做到旋翼个数增加,却不增加飞行器尺寸的效果么?但有个重要的缺点是,共轴反桨的那上下一对旋翼的气流会相互干扰,从而影响这一对动力组合的效率。简单地说,就会导致这一对旋翼的拉力不是1+1 = 2,而是1+1 < 2的糟糕结果。至于具体会损失多少,大约是20%的样子。因此这么算下来的话,其实这种构型能获得的提升很有限,还增加了结构的复杂程度。所以除非对飞行器尺寸有很严格的要求,一般很少会采用这样的设计方式。这个点子看起来不错。但有个重要的缺点是,共轴反桨的那上下一对旋翼的气流会相互干扰,从而影响这一对动力组合的效率。简单地说,就会导致这一对旋翼的拉力不是1+1 = 2,而是1+1 < 2的糟糕结果。至于具体会损失多少,大约是20%的样子。因此这么算下来的话,其实这种构型能获得的提升很有限,还增加了结构的复杂程度。所以除非对飞行器尺寸有很严格的要求,一般很少会采用这样的设计方式。 (劲鹰无人机)

以上就是关于cnc4轴气刹原理全部的内容,包括:cnc4轴气刹原理、加工中心中常说的四轴,五轴是怎样区分的、四轴加工中心和三轴的有什么不同怎么编程等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/9846007.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-02
下一篇 2023-05-02

发表评论

登录后才能评论

评论列表(0条)

保存