谁能通俗的讲一下小波变换进行时频分析算法是如何实现的

谁能通俗的讲一下小波变换进行时频分析算法是如何实现的,第1张

频分析(JTFA)即时频联合域分析(Joint Time-Frequency Analysis)的简称,作为分析时变非平稳信号的有力工具,成为现代信号处理研究的一个热点,它作为一种新兴的信号处理方法,近年来受到越来越多的重视。时频分析方法提供了时间域与频率域的联合分布信息,清楚地描述了信号频率随时间变化的关系。

时频分析的基本思想是:设计时间和频率的联合函数,用它同时描述信号在不同时间和频率的能量密度或强度。时间和频率的这种联合函数简称为时频分布。利用时频分布来分析信号,能给出各个时刻的瞬时频率及其幅值,并且能够进行时频滤波和时变信号研究。

2信号时频分析的重要性

(1)时间和频率是描述信号的两个最重要的物理量。

(2)信号的时域和频域之间具有紧密的联系。

3信号时频分析的主要方法

(1)窗口傅立叶变换(Gabor变换);

(2)连续小波变换;

(3)Wigner-Ville分布 ;

(4)希尔伯特黄变换(Hilbert-Huang Transform,HHT );

与传统的信号或数据处理方法相比,HHT具有如下特点:

(1)HHT能分析非线性非平稳信号。

传统的数据处理方法,如傅立叶变换只能处理线性非平稳的信号,小波变换虽然在理论上能处理非线性非平稳信号,但在实际算法实现中却只能处理线性非平稳信号。历史上还出现过不少信号处理方法,然而它们不是受线性束缚,就是受平稳性束缚,并不能完全意义上处理非线性非平稳信号。HHT则不同于这些传统方法,它彻底摆脱了线性和平稳性束缚,其适用于分析非线性非平稳信号。

(2)HHT具有完全自适应性。

HHT能够自适应产生“基”,即由“筛选”过程产生的IMF。这点不同于傅立叶变换和小波变换。傅立叶变换的基是三角函数,小波变换的基是满足“可容性条件”的小波基,小波基也是预先选定的。在实际工程中,如何选择小波基不是一件容易的事,选择不同的小波基可能产生不同的处理结果。我们也没有理由认为所选的小波基能够反映被分析数据或信号的特性。

(3)HHT不受Heisenberg测不准原理制约——适合突变信号。

傅立叶变换、短时傅立叶变换、小波变换都受Heisenberg测不准原理制约,即时间窗口与频率窗口的乘积为一个常数。这就意味着如果要提高时间精度就得牺牲频率精度,反之亦然,故不能在时间和频率同时达到很高的精度,这就给信号分析处理带来一定的不便。而HHT不受Heisenberg测不准原理制约,它可以在时间和频率同时达到很高的精度,这使它非常适用于分析突变信号。

(4)HHT的瞬时频率是采用求导得到的。

傅立叶变换、短时傅立叶变换、小波变换有一个共同的特点,就是预先选择基函数,其计算方式是通过与基函数的卷积产生的。HHT不同于这些方法,它借助Hilbert变换求得相位函数,再对相位函数求导产生瞬时频率。这样求出的瞬时频率是局部性的,而傅立叶变换的频率是全局性的,小波变换的频率是区域性的。

以上就是关于谁能通俗的讲一下小波变换进行时频分析算法是如何实现的全部的内容,包括:谁能通俗的讲一下小波变换进行时频分析算法是如何实现的、希尔伯特黄变换的特点、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/9861233.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-02
下一篇 2023-05-02

发表评论

登录后才能评论

评论列表(0条)

保存