亿欧 科技 9月9日消息,RISC-V处理器内核IP和解决方案公司“芯来 科技 ”近日宣布完成数千万元Pre-A轮融资,本轮融资由蓝驰创投、上创新微联合领投。此前,芯来 科技 曾获晶晨股份、芯原微电子、启迪之星创投的天使轮投资。 芯来 科技 创立于2018年,聚焦RISC-V处理器内核研发,已推出的N200系列RISC-V处理器内核IP,可以替代传统的8051与ARM Cortex-M系列内核,该内核IP系列已经过量产验证,目前已经全面推向市场。同时,芯来也提供指令扩展方案NICE,为客户提供便捷机制在芯来RISC-V处理器内核基础上进行自定义指令扩展。
UDP是一个简单的面向数据报的传输层协议:进程的每个输出 *** 作都正好产生一个UDP数据报,并组装成一份待发送的IP数据报。这与面向流字符的协议不同,如TCP,应用程序产生的全体数据与真正发送的单个IP数据报可能没有什么联系。
UDP数据报封装成一份IP数据报的格式如下图:
UTP不提供可靠性:它把应用程序传给IP层的数据发送出去,但是并不保证它们能到达目的地。
应用程序必须注意IP数据报的长度。如果它超过网络MTU(最大传输单元),那么就要对IP数据报进行分片。如果需要源端到目的端的每个网络都要进行分片,并不只是发送端主机连接第一个网络才这样做。
首部结构如下图:
端口号表示发送进程和接受进程,由于IP层已经把IP数据报分配给TCP或UDP(根据IP首部中协议字段值),因此TCP端口号由TCP来查看,而UDP端口号由UDP来查看。TCP端口号与UDP端口号是相互独立的。
UDP长度字段指的是UDP首部和UDP数据的字节长度。该字段的最小值为8字节(发送一份0字节的UDP数据报是OK的)。这个UDP长度是有冗余的,IP数据报长度指的是数据报全长,因此UDP数据报长度等于IP数据报长度减去IP首部的长度。
UDP校验和覆盖UDP首部和UDP数据。回想IP首部的校验和,它只覆盖IP的首部----并不覆盖IP数据报的任何数据。
UDP和TCP在首部都有覆盖它们首部和数据的校验和。UDP校验和是可选的,而TCP的校验和是必需的。
尽管U D P检验和的基本计算方法与我们之前第三节中描述的IP首部检验和计算方法相类似(16bit字的二进制反码和),但是它们之间存在不同的地方。首先,UDP数据报的长度可以为奇数字节,但是检验和算法是把若干个16bit字相加。解决方法是必要时在最后增加填充字节0,这只是为了检验和的计算(也就是说,可能增加的填充字节不被传送)。
如果发送端没有计算检验和而接收端检测到检验和有差错,那么UDP数据报就要被悄悄地丢弃。不产生任何差错报文(当IP层检测到IP首部检验和有差错时也这样做)。
UDP检验和是一个端到端的检验和。它由发送端计算,然后由接收端验证。其目的是为了发现UDP首部和数据在发送端到接收端之间发生的任何改动。
物理网络层一般要限制每次发送数据帧的最大长度。任何时候IP层接收到一份要发送的IP数据报时,它要判断向本地哪个接口发送数据(选路),并查询该接口获得其MTU。IP把MTU与数据报长度进行比较,如果需要则进行分片。分片可以发生在原始发送端主机上,也可以发生在中间路由器上。
把一份IP数据报进行分片以后,只有到达目的地才进行重新组装(这里的重新组装与其他网络协议不同,它们要求在下一站就进行重新组装,而不是在最终目的地)。重新组装由目的端的IP层来完成,其目的是使分片和重新组装过程对传输层(TCP和UDP)是透明的。已经分片过得数据报可能会再次进行分片,IP首部中包含的数据为分片和重新组装提供了足够的信息。
对于发送端发送的每份IP数据报来说,其标识字段都包含一个唯一值。该值在数据报分片时被复制到每个片中。标志字段其中一个比特来表示"更多的片"。除了最后一片外,其他每个组成数据报的片都要把比特置1。片偏移字段指的是该片偏移原始数据报开始处的位置。另外,当数据报被分片后,每个片的总长度值要改为该片的长度值。
最后,标志字段中有一个比特称作“不分片”位。如果将这一比特置1,IP将不对数据报进行分片。相反把数据报丢弃并发送一个ICMP差错报(“需要进行分片但设置了不分片比特”)给起始端。
当IP数据报被分片后,每一片都成为一个分组,具有自己的IP首部,并在选择路由时与其他分组独立。这样,当数据报的这些片到达目的端时可能会失序,但是在IP首部中有足够的信息让接收端能正确组装这些数据报片。
IP分片有一个问题:丢失掉一片数据也要重新传输整个数据报。
原因:IP层没有超时重传机制---由更高层负责超时和重传。当来自TCP报文段的某一片丢失后,TCP超时会重发整个TCP报文段,该报文段对应于一份IP数据报。没有办法重传数据报中的一个数据报片。
使用UDP很容易导致IP分片。下图是UDP分片示例:
发现ICMP不可达差错的另一种情况是,当路由器收到一份需要分片的数据报,而在IP首部又设置了不分片(DF)的标志比特。如果某个程序需要判断到达目的端的路途中最小MTU是多少----称作路径MTU发现机制,那么这个差错就可以被该程序使用。
这个情况下ICMP不可达差错报文格式如下图:
如果路由器没有提供这种新的ICMP差错报文格式,那么下一站的MTU就为0。
理论上,IP数据报的最大长度是65535字节,这是由IP首部16比特总长度字段所限制的。去除20字节的IP首部和8个字节的UDP首部,UDP数据报中用户数据的最长长度为65507字节。但是,大多数实现所提供的长度比这个最大值小。
其中有两个限制因素:
1应用程序可能会受到其程序接口的限制。socket API提供了一个可供应用程序调用的函数,以设置接收和发送缓存的长度。对于UDP socket,这个长度与应用程序可以读写的最大UDP数据报的长度直接相关。
2第二个限制来自于TCP/IP的内核实现。可能存在一些实现特性(或差错),是IP数据报长度小于65535字节。
我们同样可以使用UDP缠上ICMP"源站抑制"差错。当一个系统(路由器或主机)接受数据报的速度比其处理速度快时,可能产生这个差错。
当在以太网传播的数据需要经过SLIP链路时,可能产生该差错报文。因为SLIP链路的速度大约只有以太网的千分之一,所以,很容易使其缓存用完。
在本例中,应用程序要么没有接收到源站抑制差错信号,要么接收到却将其忽略了。结果是如果采用UDP协议,那么BSD实现通常忽略其接收到的源站抑制报文。其部分原因在于,在接收到源站抑制差错报文时,导致源站抑制的进程可能已经中止了。
不处理ICMP源站抑制差错,说明了UDP是一个非可靠的协议,它只控制端到端的流量控制。除非在应用程序中建立一些应答机制,否则发送端并不知道接收端是否收到了这些数据。
来自客户的是UDP数据报。IP首部包含源端和目的端IP地址,UDP首部包含了源端和目的端的UDP端口号。当一个应用程序接收到UDP数据报时, *** 作系统必须告诉它是谁发送了这份消息,即源IP地址和端口号。
这个特性允许一个交互UDP服务器对多个客户进行处理。给每个发送请求的客户发回应答。
一些应用程序需要知道数据报是发给谁的,即目的地址。这要求 *** 作系统从接收到的UDP数据报中将目的IP地址交给应用程序。
大多数UDP服务器是交互服务器,单个服务器进程对单个UDP端口上的所有客户请求进行处理。
通常程序所使用的每个UDP端口都与一个有限大小的输入队列向联系。这意味着,来自不同客户的差不多同时到达的请求将有UDP自动排队。接收到UDP数据报以其接收顺序交给应用程序。
因此,由于队列溢出导致的UDP数据报的丢失不可避免。应用程序不知道其输入队列什么时候会溢出,只能有UDP对超出数据报进行丢弃处理。同时,不会发挥任何消息告诉客户其数据报被丢弃。
大多数UDP服务器在创建UDP端点时都使其本地IP地址具有通配符的特点。这表明进入的UFP数据报如果其目的地为服务端端口,那么任何本地接口均可接收到它。
大多数系统允许UDP端点对远端地址进行限制。
下面是UDP服务器本身可以创建的三类地址绑定:
在所有情况下,lport指的是服务器有名端口号,localIP必须是本地接口的IP地址。表中这三行的排序是UDP模块在判断用哪个端点接收数据报时所采用的顺序。最为确定的地址(第一行)首先被匹配,最不确定的地址(最后一行IP地址带有两个星号)最后进行匹配。
当UDP数据报到达的目的IP地址为广播地址或多播地址,而且在目的IP地址和端口号处有多个端点时,就向每个端点传送一份数据报的复制(端点的本地IP地址可以含有星号,它可匹配任何目的IP地址)。但是,如果UDP数据报到达的是一个单播地址,那么只向其中一个端点传送一份数据报的复制。选择哪个端点传送数据取决于各个不同的系统实现。
UDP是一个简单协议。它想用户进程提供的服务位于IP层之上,包括端口号和可选的校验和,我们用UDP老检查校验和并观察分片是如何进行的。
当系统接收IP数据报的速率超过这些数据报被处理的速率时,系统可能发送ICMP源站抑制差错报文。使用UDP时很容易产生这样的ICMP差错。
以上就是关于TCP/IP协议内核分析全部的内容,包括:TCP/IP协议内核分析、什么是IPV6、microblaze 怎么将ip内的值通过寄存器返回内核等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)