物联网及其四层模型

物联网及其四层模型,第1张

一、物联网概念 

随着互联网技术、传感器技术和人工智能技术的快速发展,物联网技术也应运而生,物联网技术在各类领域能发挥重要性变革,对解放生产力、提高工作效率和推动规模化生产等方面贡献颇大,特别是在农业领域大有可为。实现智慧农业,必须依靠物联网技术为依托,以智慧平台为核心,立足市场需求,构建生产组织智能化、产品质量溯源化、市场经营网络化为一体的产业体系。

物联网是通过智能传感器、射频识别、激光扫描仪、全球定位系统、遥感等信息传感器设备及系统和其他基于物-物通信模式的短距离自组织网络,按照约定的协议,在物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种巨大智能网络。它是通信网和互联网的扩展应用和网络延伸,主要是实现人与物、物与物的信息交互。
二、物联网四层模型

在信息层面,数据信息经历生成、传输、处理和应用四个阶段,分别对应着物联网的感知识别层、网络构建层、数据处理层和综合应用层。感知识别层是利用感知技术和智能装备对物理世界进行感知识别。网络构建层是按照特定的通信协议搭建各类网络对信息进行传输,以实现物-网互联。数据处理层通过大数据和人工智能技术对网络层采样的数据进行预处理、计算存储和数据挖掘等一系列 *** 作,最大地发挥出信息的生产效能。综合应用层是集成各类技术以实现实时控制、精准管理和科学决策等功能的应用系统,从而改进人的生产方式。各类技术应对不同环境、不同需求独立展开工作,各层面间又是联系紧密,如同链条式协同配合。
感知层作为物联网的“神经末梢”,主要是通过信息感知技术将生活生产各方面映射成数据信息,并能可靠传送到网络层,实现物理世界和信息世界连接起来。信息感知技术是指利用传感器、RFID、GPS和RS等实时实地对农业领域物体进行信息采集和获取。在农业生产现场可以利用无线传感器采集温湿度、光照、溶解氧浓度和农作物长势等参数,利用视频监控设备获取农作物成长现状,利用遥感技术大规模感知农作物表面和环境因素。信息感知层作为物联网的基础,获取大量的数据信息,为信息进一步加工、处理、分析而科学决策和指导生产经营打通“二元”壁垒。

网络层要在感知层和处理层发挥承上启下作用,是以现场总线技术、无线传感器网络技术(WSN)和移动通信技术互为补充的通信网络将传感设备连接“上网”。信息传输技术可分为有线和无线、短距离和长距离,它们有各自特点、应对不同环境、利用不同信道共同组建集成网络体系,以实现高度可靠的信息交流和共享。无线传感器网络成为农业信息传输的“主力军”,通过包括传感器节点、汇聚节点、任务管理节点。大量具有独立处理能力的微型传感器节点布置在监测区域逐跳传输,并路由到汇聚节点,然后通过互联网或卫星抵达任务管理节点,最后用户通过任务管理节点配置和管理传感器网络以实现监测任务发布和数据收集。常见的无线局域网技术有蓝牙、WIFI、ZigBee,无线广域网技术有LPWAN、NB-IOT、4G和5G。特别是以“万物互联”为目标的5G将农业物联网数据传输效率带来“质的跃升”。

处理层是农业物联网的“灵魂”,通过信息处理技术对感知层采集的信息存储和挖掘分析形成预测预警、智能决策、优化控制和疾病诊断等智能模型,从而对农业生产和经营给出科学的指导。农业生产和经营过程中,数据信息是呈指数型爆炸产生,不仅是体量大,而且结构复杂、实时性强、关联度高,必须通过大数据技术处理、存储和管理,才能从海量数据中获取更多的价值。农业大数据技术平台是以Hadoop架构、MapReduce软件模型、其他组件补充的生态软件体系形成的分布式海量数据存储管理、运算处理和分析平台。数据挖掘是指从海量数据中通过算法搜索隐藏的信息关系,主要手段是机器学习、深度学习、计算机视觉等人工智能技术。只要获取隐藏知识,才能帮助决策者做出合理、正确的决定和决策。

应用层是农业物联网的“指挥室”。主要通过感知技术、传输技术、处理技术和设备进行软硬件综合集成,形成智能控制、监控决策、专家系统、物流溯源等等应用。根据生产、经营的和管理不同需求,开发出特定功能的应用,用户通过web端或移动客户端应用实时掌握信息、发出精准控制指令。可以说,先进技术发挥设备的最大生产力,综合应用改变人的工作方式,有利于做出更科学合理决策。

随着信息化与汽车的深度融合,汽车正在从传统的交通运输工具转变为新型的智能出行载体,发展智能网联车对一个国家而言具有战略意义,因此近年来各国大力支持智能网联车的发展,我国也不例外,从政策扶持、制定道路测试法规、建设示范区、基础数据平台、产业创新联盟和批准重点项目等多方面推进我国智能网联车的发展。

政策与法规双管齐下

智能网联汽车是指车联网与智能车的有机联合,是搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车与人、车、路、后台等智能信息交换共享,实现安全、舒适、节能、高效行驶,并最终可替代人来 *** 作的新一代汽车。

发展智能网联车有助于改善交通安全,提高交通效率。另一方面,智能网联车能够有效减少污染物的排放量,起到环保的作用。近年来,各国纷纷推出相关政策大力支持智能网联车的发展,我国也不例外,将智能网联车上升到国家发展战略高度。从政策扶持、制定道路测试法规、建设示范区、基础数据平台、产业创新联盟和批准重点项目等多方面推进我国智能网联车的发展。

在政策上,2018年12月,国家发布《车联网(智能网联汽车)产业发展行动计划》,提出到2020年,实现LTE-V2X在部分高速公路和城市主要道路的覆盖,开展5G-V2X示范应用,建设窄带物联网(NB-loT)网络,构建车路协同环境。车联网用户渗透率达到30%以上,新车驾驶辅助系统(L2)搭载率达到30%以上,联网车载信息服务终端的新车装配率达到60%以上。2019年12月,《新能源汽车产业发展规划(2021-2035年)征求意见稿》提出到2025年,智能网联汽车新车销量占比达到30%,高度自动驾驶智能网联汽车实现限定区域和特定场景商业化应用。

道路测试是实现智能网联车产业化和商业化的基础,因此我国高度重视智能网联汽车公共道路测试情况,近年来加紧出台了各项智能驾驶上路法规。2018年4月,我国颁布了第一个规范自动驾驶汽车道路测试的法规文件《智能网联汽车道路测试管理规范(试行)》;2019年10月,工业和信息化部在智能网联汽车测试区交流研讨会上表示将会研究修订《智能网联汽车道路测试管理规范(试行)》,不断优化完善测试验证和应用示范环境。与此同时,重庆、北上海等地方政府也相继出台自动驾驶汽车道路测试法规文件加快推动智能网联车道路测试。

建立多样化的示范区

在智能网联车示范运行方面,我国早在2015年就开始在全国各地布局,目前已经在北京、上海、重庆、浙江、长春、武汉、无锡等地建设了超过23个智能网联汽车测试示范区,积极推动半封闭、开放道路的测试验证。

数据平台、创新联盟与重点项目助力

除了不断完善道路测试法律法规文件和建设多元化的智能网联汽车示范区外,国家还大力支持建设智能网联汽车基础数据平台,目前我国已经建立了交通行业网联化统一监管平台,其具有全国性平台的架构。与此同时,在国家工信部的支持下,中国汽车工程学会联合包括汽车整车企业、科研院所、通信运营商、软硬件厂商等30多家单位共同发起成立“车联盟产业技术创新战略联盟”,2015年7月更名为“智能网联汽车产业技术创新战略联盟”,旨在政策和战略研究、关键共性技术研发、学术交流与国际合作、人才培养等方面展开合作,进而推动我国智能网联车技术的快速发展。

为与国际先进智能网联汽车技术水平保持同步发展,开发具有自主知识产权的智能网联汽车产品和技术,我国也相继批准国家重点研发项目,如智能电动汽车电子电气架构研发、电动自动驾驶汽车关键技术研究与示范运行等项目,目前均已经进入中期检查阶段。

—— 以上数据来源于前瞻产业研究院《中国智能网联汽车( ICV )行业发展模式与投资战略规划分析报告》


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/13353920.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-20
下一篇 2023-07-20

发表评论

登录后才能评论

评论列表(0条)

保存