有什么3D框架或者插件值得学习的?

有什么3D框架或者插件值得学习的?,第1张

推荐一个前端开发者的常用工具列表:

1 lodash:一个一致性、模块化、高性能的 JavaScript实用工具库。

2 ramda:一个很重要的库,提供了许多有用的方法,每个 javaScript程序员都应该掌握这个工具。

3 dayjs:一个轻量的处理时间和日期的 JavaScript库,js工具类和 Moment js的AP设计保持完全一样,体积 只有2kb。

4 bigjs:一个小型,快速的 JavaScript库,用于任意精度 的十进制算术运算。

5 qs:一个url参数转化 (parse和stringify)的轻量级js 库。

6 threejs:基于webgl的开源3D框架,对webgl进行封装,需要专业的3D开发知识。

7 thingjs: 一款新兴的3D框架,封装物联网3D开发概念(建筑、楼层等),仅要求初级js基础。

常见的技术社区,都会有大前端学习资源和社区讨论,推荐spring4all、博客园、开源中国、思否、CSDN、V2ex、腾讯云、阿里云、spring4all、掘金、ITPUB,总有合适你的学习氛围。

如果有一定的美术能力,3D可视化是不错的发展方向!审美在线,又有开发基础的话,转行3D开发师不用愁。我所处的物联网3D可视化领域,这个职业很有前景哦~thingjs官网-资源中心提供视频教程、demo案例、下载插件和3D模型,好好实 *** 一下,初学者有破了一周开发3D项目的记录!

ThingJS教程(2019版)

ThingJS教程(2020版)

CampusBuilder教程

ChartBuilder教程

ThingJS行业案例

看一下模型效果杠杠滴!


工业物联网云平台推荐是一个基于云计算、大数据、人工智能等前沿技术的智能制造平台,它集数据采集、数据存储、数据处理、数据分析、决策支持等功能于一体,可以实现设备的远程监控、预测性维护、异常检测以及生产调度、设备管理等工业应用。

工业物联网云平台推荐的主要特点包括以下几个方面:

一、开放性

工业物联网云平台是一个开放的平台,它采用标准化的接口和协议,与各种硬件设备、传感器、机器人等工业设备实现无缝对接,与各种软件系统、应用服务实现互联互通。同时,平台还提供了丰富的API,方便开发者和企业自主开发和集成精细化的应用。

二、可扩展性

工业物联网云平台是一个高度可扩展的平台,它可以支撑海量设备数据的采集、存储、处理、分析和应用,能够灵活地满足用户的不同需求。此外,平台还提供了多样化的工具、算法和应用组件,方便用户根据实际情况进行定制化。

三、协作性

工业物联网云平台是一个强调协作的平台,它鼓励企业之间、企业和研究机构之间、企业和政府之间等多种形式的合作,共同推动工业物联网技术的创新和应用。平台还提供了多种合作机制和服务,包括共享设备、协同工作、技术支持、数据交换等,为用户提供全方位的支持。

四、安全性

工业物联网云平台推荐是一个高度安全的平台,它采用了多种安全技术和加密方案,保障用户数据的机密性、完整性和可用性。平台还提供了完善的权限管理和安全审计机制,有效防范各类网络攻击。

工业物联网云平台推荐,上海力控科技ThingNet物联网云平台是基于以往的物联网产品,以及目前市场上的各种云平台优点,精心打造的一款实现设备上云的多功能产品,该物联网云平台面向设备而使用,例如大型的空调机组、空压机、泵等等设备的上云,云平台提供从设备接入、运行监控、设备资产管理、工业数据预知分析等一站式SaaS服务,使用对象可以为设备厂家、设备运维厂家、以及相关设备管理型公司等。

ThingJS 是物联网可视化PaaS开发平台,帮助物联网开发商轻松集成 3D 可视化界面。ThingJS 名称源于 物联网Internet of Things (IoT)中的 Thing (物),ThingJS 使用当今最热门的 Javascript 语言进行开发。不仅可以针对单栋或多栋建筑组成的园区场景进行可视化开发,搭载丰富插件后,也可以针对地图级别场景进行开发。广泛应用于数据中心、仓储、学校、医院、安防、预案等多种领域。

物联网分为感知层、网络层、应用层。应用层涉及到 3D 界面的开发,对大部分企业来说都有一定挑战。ThingJS 可以极大降低 3D 界面开发的成本。下图清晰的反映了 ThingJS 在物联网领域中的定位:

ThingJS 基于 HTML5 和 WebGL 技术,可方便地在主流浏览器上进行浏览和调试,支持 PC 和移动设备。ThingJS 为可视化应用提供了简单、丰富的功能,只需要具有基本的 Javascript 开发经验即可上手。

ThingJS 提供了场景加载、分层级浏览,对象访问、搜索、以及对象的多种控制方式和丰富的效果展示,可以通过绑定事件进行各种交互 *** 作,还提供了摄像机视角控制、点线面效果、温湿度云图、界面数据展示、粒子效果等各种可视化功能。

ThingJS提供如下相关组件和工具供用户使用:

CityBuilder:聚焦城市的 3D 地图搭建工具,打造你的 3D 城市地图。

CamBuilder:简单、好用、免费的 3D 场景搭建工具。

ThingPano:全景图制作工具,轻松制作并开发全景图应用,实现 3D 宏观场景和全景微观场景的无缝融合。

ThingDepot:上万种模型,数十个行业,自主挑选,一次制作多次复用。

webGL和openGL的区别为:性质不同、插件支持不同、用途不同。WebGL 20基于OpenGL ES 30,确保了提供许多选择性的WebGL 10扩展,并引入新的API。

一、性质不同

1、webGL:webGL的为。是一种用于展示各种3D模型和场景的绘图协议,并提供了3D图形的API。

2、openGL:openGL是用于渲染2D、3D矢量图形的跨语言、跨平台的应用程序编程接口(API)。

二、插件支持不同

1、webGL:webGL利用底层的图形硬件加速功能进行的图形渲染作,无需任何浏览器插件支持。

2、openGL:openGL通过HTML脚本本身实现Web交互式三维动画的制作,需要浏览器插件支持。

三、用途不同

1、webGL:webGL可被用于创建具有复杂3D结构的网站页面,甚至可以用来设计3D网页游戏等等。

2、openGL:openGL用于CAD、虚拟现实、科学可视化程序和电子游戏开发。

主流的ITS系统有三大系统,分别是SCOOT,SCATS,TRANSYT
1SCOOT(Split, Cycle and Offset Optimization Technique: 绿信比、周期和相位差优化技术)是由英国运输研究所(TRL--Transport Research Laboratory, 90年代TRRL改名为TRL)在TRANSYT基础上研制的自适应控制系统,该系统于1975年研制成功,并在英国城市Glasgo进行现场试验,取得了较好的效果。上个世纪90年代SCOOT系统进行了多次升级,其最新版本为44版,其版权为TRL、PEEK公司和西门子公司共同拥有。SCOOT已经历了二十多年的发展,全世界共有超过170个城市正运行着该系统。
2SCATS(Sydney Coordinated Adaptive Traffic System,简称SCATS,或简称SCATS系统)悉尼自适应交通控制系统,由澳大利亚新南威尔士州道路交通局(RTA)研究开发,是目前世界上少有的几个先进的城市信号交通控制系统之一。
3TRANSYT系统是一种脱机配时优化的定时控制系统,全称是(Traffic Network Study Tool)“交通网络研究工具”,是定时式脱机 *** 作交通信号控制系统,这一方法最初是由英国道路交通研究所(TRRL)的D-I罗伯逊先生于1966年提出的。
厂家其实不是固定的,很多厂家都卖,只是版权归某几个企业所有。也可以找代理公司去咨询或购买这些产品。

数字孪生在新型智慧城市建设中可以进行数字孪生流域建设、数字孪生排水管网、数字孪生桥梁防撞指挥等应用场景,进行数字化、精细化、可视化管理。

一、数字孪生流域政策环境:

2021年12月23日水利部召开推进数字孪生流域建设工作会议,水利部部长李国英提出:“数字孪生流域是以物理流域为单元、时空数据为底座、数学模型为核心、水利知识为驱动,对物理流域全要素和水利治理管理全过程的数字化映射、智能化模拟,实现与物理流域同步仿真运行、虚实交互、迭代优化”,同时强调以数字化、网络化、智能化为主线,以数字化场景、智慧化模拟、精准化决策为路径,以算据、算法、算力建设为支撑,加快推进数字孪生流域建设,实现预报、预警、预演、预案功能。

二、水利信息化发展现状:

①透彻感知能力不足:

水利感知的覆盖范围和要素不全,对于水文信息、环境信息、工程信息等方面的监测能力已经不能满足现有业务发展和管理需要,虽然现在能够通过地面、水上、航空、航天等技术与设备进行信息采集工作,但整体智能化水平仍处于相对较低的程度。对于将要建设的数字孪生流域体系要求仍有较大的距离,物联网技术与设备也没有得到充分的利用,且通信基础能力较为薄弱,在网络带宽、应急措施方面均有不足。

②信息基础设施“算力”欠缺:

现有水利业务网中,仅有6个省(自治区)的水利业务网能够通达到乡镇级水利单位,对于工程管理单位来说联通率更低,严重阻碍了水利业务应用“三级部署、多级应用”的发展原则。骨干网络不能满足现有数据传输、服务调用的需要。面对现在越来越多的影像、图像等数据的快速增长,缺乏大数据处理、云计算与数据存储能力。

③信息资源开发利用有待提升:

水利内部信息系统缺乏整合,导致现有水利设施基础信息不全、准确性不高、基础数据不统一、对象代码不统一、数据标准不统一等问题,各类业务和各级部门间存在数据“重采、重存”的现象。同时对所需要的如地质信息等联系紧密的外部信息缺乏共享,联动不足。

④业务应用智能化水平差距较大:

现有水利信息系统中的水利工程、水资源开发、水灾旱灾防御、水土保持等业务均存在业务与信息技术融合不深入,智能化水平不足,对于5G、AI、大数据、物联网等新兴技术未能充分应用,最终导致信息系统对业务发展支撑能力薄弱的问题。

三、水利数字孪生,实现物理空间数字化映射与智慧化模拟

广东地空智能科技有限公司协同水利专业机构,在智慧水利领域进行了相关的钻研和实践,通过感知层抓取实时监测数据,基于全数字测量、大数据、云计算、地理信息、三维虚拟模型、人工智能、区块链等十余项高新技术,整合水利各项基础数据,以水利时空数据为重点研究对象,聚焦于水利数据的管理、展示与分析,对水利空间进行精细、全面、动态的模拟,构建水利业务横向共享、纵向联动,以此实现各级水利部门间信息联通,真正打通涉水信息孤岛,打破涉水业务分割,为管理者进行安全分析评估、工程运维管理、防汛调度管理、综合展示等提供可视化的便捷支持。数字孪生水利信息化监管平台集成数字孪生流域管理系统、数字孪生模拟仿真系统和数字孪生知识服务系统三大系统,融合与汇聚了多源数据,建立全时空、多维度、多粒度的水利全时空资源池,实现水利数据资产的一体化管理;一方面升级与拓展水利一张图,建设基础数据统一、 监测数据汇集、 二三维一体化、三级协同贯通的数字底板,提供水利场景的高保真、高稳定、高质量模拟仿真;另一方面集成耦合多维多时空尺度的水利专业模型和AI智能模型,提供集分析-模拟-表达-决策于一体的“四预”能力,为“2+N”业务提供智慧化服务。

链接:网页链接

数字孪生水利信息化监管平台聚焦数字孪生,以物理流域为单元,以水利时空数据为底座,以流域数据集成和可视化、水利模拟仿真为核心,以水利知识为驱动,运用物联网、大数据、人工智能、虚拟仿真等技术,实现物理空间内全域、全要素、全过程的数字化映射与智慧化模拟,支撑水利精准化决策。

四、整合数据,搭建数字孪生水利大数据中心:

基于水利行业相关的数据标准与规范,梳理水利数据资源目录,接入并整合多时空、多粒度、多维度水利数据,包括基础地理空间数据、业务管理数据、监测感知数据、跨行业共享数据等,经标准化处理,形成数字孪生水利大数据中心,为用户提供统一标准的数据服务。

五、分类入库,形成水利时空大数据全景图:

分类融合与汇聚多时空、多粒度、多维度水利数据,构建标准一致的水利数据资源池,形成水利时空大数据全景图,为用户提供全方位、多时空、多粒度的全时空数据资源服务。

子系统一:数字孪生流域管理系统

数字孪生流域管理系统是数字孪生水利信息化监管平台的基础,主要是建设数据底板,为模拟仿真、知识服务提供海量数据支撑。系统构筑统一门户,接入多源水利时空数据,打破数据壁垒,实现数据统一管理;建立物理空间到数字空间的虚拟映射,构建水利时空全景一张图;综合运用物联网、云计算、大数据、人工智能、地理信息等新型信息化技术手段,提供海量数据分析能力,实现对水利空间的精细、全面、动态模拟,为精细化管理提供支撑。

①多源异构数据接入,实现数据统一管理

②“物理-数字”全映射,形成水利资源“一张图”:

③软、硬件加持,助力海量数据分析:

子系统二:数字孪生模拟仿真系统

数字孪生模拟仿真系统是数字孪生流域管理系统的升级,主要是提供高保真、低延时、高稳定的三维可视化场景,为提供细化、量化、动态、直观的计算分析提供支撑。系统基于大场景高效率图形可视化技术,借助轻量化+webp+块存储+子域等一系列技术,提升整体加载效率与浏览流畅度,实现多源、多维度、多粒度数据的高保真、高质量空间化表达与仿真建模。

子系统三:数字孪生知识服务系统

数字孪生知识服务系统是数字孪生水利信息化监管平台的核心内容与最终目标,主要是集成耦合多维多时空尺度的数据模型,提供“四预”能力。系统在共享水利部本级、流域管理机构各类计算模型与计算成果的基础上,按需构建水利专业模型、人工智能模型和水利知识模型,形成数字孪生水利模型库,提供工程调度、安全监测、知识挖掘等智慧化服务,实现“预报、预警、预演、预案”功能的综合决策指挥。

①集成水利专业模型,推进水利精准模拟:

聚焦智慧水利与空间智能领域,广东地空智能科技有限公司致力于打造专业的水文-水动力-水质耦合模型,支撑流域、区域的防洪抗旱、水资源水环境的调度管理、智慧城市的防洪排涝与水环境治理、大江大河的水污染应急调度指挥等,推进水利精准化模拟与分析。

②引入AI智能模型,助力水利智慧决策:

利用遥感AI、视频AI等技术,对遥感影像进行自动解译和加工处理,对雨水情、工情、险情、旱情、水土流失、水质水环境、非法采砂、水域岸线占用等实现大尺度的动态监测预警,提升水利安全监测能力。

③建立水利知识模型,支撑水利知识服务:

以模型库、知识库为驱动,快速分析研判,优化完善应急方案,配合人员终端信息交互,为单位内部以及与流域管理机构、水利部的异地多方会商、相关人力、物力资源应急调度指挥等提供支撑。

你可以先去绘学霸网站找“3d建模”板块的免费视频教程-点击进入完整入门到精通视频教程列表: >

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/13496204.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-18
下一篇 2023-08-18

发表评论

登录后才能评论

评论列表(0条)

保存