特色工艺龙头华虹半导体业绩创新高,称支持国产材料与设备替代

特色工艺龙头华虹半导体业绩创新高,称支持国产材料与设备替代,第1张

在中国大陆芯片代工制造领域,如果将中芯国际称为行业第一,那么华虹半导体可以排名第二。中芯国际与华虹半导体这两家芯片代工厂商,应该说是“中国大陆晶圆代工双巨头”。只不过,与颇受外人注目的中芯国际比较起来,华虹半导体的“存在感”确实要低一些。 作为中国大陆最大的特色工艺制程芯片代工厂,也是最大的功率器件代工厂,华虹半导体同样被业界视为一家具市场风向标的厂商。

华虹半导体是由华虹NEC与宏力半导体在2011年合并而来。华虹NEC成立于1997年,曾经主要是为NEC(日本电气)开发、制造及销售DRAM晶圆。2003年,华虹集团从NEC收回华虹NEC合资厂经营管理权,逐步停止 DRAM生产,并开始从事芯片代工制造业务。而上海宏力半导体于2000年底成立,主要从事计算机芯片、独立NOR闪存、eFlash、 汽车 发动机控制器等产品制造。2011年12月,华虹NEC与宏力半导体合并,2013年10月,集团完成重组,构成了如今的华虹半导体。

简单来说,华虹半导体聚焦于半导体特色工艺制程,主要工艺技术包括嵌入式非易失性存储器、逻辑及射频、分立器件、模拟及电源管理、独立非易失性存储器,广泛应用于电子消费品、通讯、计算机、工业及 汽车 市场。在实际应用中,处理器芯片和存储芯片遵循摩尔定律,需要用到先进制程工艺,但是射频、功率、传感器、模拟等器件则通过特色工艺制程进行生产。与先进逻辑制程工艺相比,特色工艺制程具备非尺寸依赖,工艺相对成熟,所需资本支出低,产品研发投入低等特点,同时产品生命周期也更长,种类更多。

1,华虹半导体交出了一份亮眼的半年报业绩,无锡厂表现出色

当前,全球芯片缺货涨价不断发酵,多家半导体大厂相继发布“创新高”的财务业绩。继中芯国际之后,华虹半导体也于8月12日交出了2021年上半年业绩。据公司发布财报显示,2021年上半,华虹半导体的营收达6.51亿美元,较2020年上半年增长52.0%;净利润7714万美元,较2020年上半年增长102.3%。其中,在2021年第一、第二季度,华虹的收入分别为3.05亿美元、3.46亿美元。同时,公司公布了2021年第三季度指引,预计收入约4.10亿美元左右,有望再次创造单个季度收入新高。营收和净利润双双高增长,华虹可谓是迎来了半导体行业的“高光时刻”。

目前,在上海金桥和张江,华虹半导体建有三座8英寸晶圆代工厂(上海一厂、二厂和三厂),总产能已达到18万片/月。其中,一厂和二厂的产能分别为6.5万片/月和6万片/月;三厂的产能为5.3万片/月,估计后续还能增加1~2万片/月的产能。值得补充的是,位于上海的一厂、二厂和三厂,由华虹半导体全资控股。一厂和二厂的工艺节点为1μm -95nm,主产智能卡、模拟器件、电源管理、功率器件和传感器等;三厂的工艺节点为0.25μm~90nm,主要产品包括微控制器、智能卡、消费电子产品和传感器等。至2021年第二季度,华虹半导体上海一厂、二厂和三厂的营收创出 历史 新高,为2.62亿美元,占该季度营收的75.7%。

华虹总裁兼执行董事唐均君表示:"对于三条8英寸生产线来说,本季度也是有史以来最好的一个季度。8英寸平台营业收入创下2.62亿美元的 历史 最高。得益于平均销售价格的提高和生产线效能提升,8英寸毛利率从2021年第一季度的27.3%提高到31.6%。贡献净利润5130万美元,占总收入的19.6%。我们将把握机遇,继续做优8英寸生产线的工艺平台,8英寸生产线效益前景仍然看好。"

此外,华虹半导体还在无锡设有一座12英寸晶圆代工厂,工艺节点90nm及以下,当前主要产品为闪存、功率器件和CIS图像传感器等。公开信息显示,无锡厂由华虹半导体、国家集成电路产业基金、无锡地方政府设立的投资公司三方共同投资建设,华虹半导体目前合计持股51%。而华虹无锡基地总投资达100亿美元,占地约700亩。

截至2021年5月时,华虹无锡12英寸厂的产能已达4.8万片/月,预计2021年底可望扩充至6.5万片/月。 东方证券在近期的一份报告中认为,无锡厂在2022年中有望扩产至8万片/月左右,成为中国大陆地区领先的12英寸特色工艺生产线,也是中国大陆地区第一条12英寸功率器件代工生产线。东方证券称,如果按照12英寸片平均销售价格(ASP)1000~1200美元计算,那么当华虹无锡的产能达8万片/月后,可贡献9.6~11.5亿美元收入。从业务体量上而言,相当于再造一个华虹。报告还提到,在未来,当无锡基地项目完全建成后,华虹在无锡可望拥有三条12英寸生产线,总产能可能高达20万片/月。 而华虹无锡厂的产能迅速爬升,同样显见于公司此次发布的财报。2021年第二季度,华虹无锡七厂在营收中贡献占比24.3%。而2020年第二季度,该数字仅为4.2%。

在此次业绩说明会上,唐均君称:"华虹无锡12英寸生产线第二季度营收达到8400万美元,同比增长786.8%,环比增加54.0%,息税折摊前利润2990万美元,较上季度增长208.3%。截至今年5月份,12英寸生产线月产能已达到4.8万片,产能利用满载。我们将稳步实现于今年年底达到6.5万片的月生产能力。公司还将继续加大投入,进一步扩大产能,不断优化工艺布局,与产业链一起发展壮大。"

“无锡厂爬产非常快,大部分增长都是来自无锡。”唐均君表示,华虹无锡12英寸晶圆厂和上海三家8英寸晶圆厂的ASP均有所提升,并且预计ASP将继续提升。“每个季度8英寸和12英寸晶圆厂的ASP都会有3~5%的提升,有望每年带来超10%的ASP增长,且还会持续增加。”也正因此,华虹表示持续看好2021年第三季度业绩,预估收入可达4.10亿美元左右,毛利率将介于25~27%。

值得一提的是,此前中芯国际联席CEO赵海军也表示,因产能扩建以及交货速度慢,供不应求的状况至少将持续到年底或者2022年上半年,并预告2021年第三、第四季度的价格仍可能继续往上走。华虹此次在业绩说明会上,唐均君同样表示,2021年下半年单价每季预计将增长3~5%,8英寸和12英寸单价情况保持乐观。在此之前,包括三星电子、联电在内的芯片代工厂商也已预告2021年下半年涨价的动作,业界预期接下来的第三季度晶圆代工价格有望进一步提升。

2,产能扩产加速,设备更需先行,华虹称愿意支持并导入国产半导体设备

芯片厂代工的价格季季涨,是因为整个半导体市场供需失衡不断发酵。据市场分析机构海纳国际集团最新数据显示,2021年7月芯片交货期较前一个月增加了8天以上,达到20.2周,是公司自2017年开始跟踪该数据以来最长的等待时间。 若以此来看,全球芯片短缺问题正在持续恶化。

因而,各家晶圆代工厂纷纷下场抛出产能扩充计划。全球第一大芯片代工厂台积电已经宣布,公司未来三年投入1000亿美元,今年资本开支提升至300亿美元;联电公布35.8亿美元投资案,扩充南科12英寸厂;三星将在2030年前增加对System LSI和Foundry业务领域的投资,投资总额扩大至约1516亿美元;英特尔宣布多项扩产项目,计划在美国亚利桑那州投资约200亿美元新建两座晶圆厂;中芯国际计划,今年12英寸产线的月产能扩产1万片,8英寸产线的月产能扩产不少于4.5万片;安世半导体称未来12~15个月内投资7亿美元,扩大欧洲和亚洲产能;格芯宣布在新加坡园区建设新晶圆厂,扩大全球制造规模。

而华虹也于本次业绩说明会上也已透露,无锡12英寸晶圆厂在今年底达成6.5万片的月产能目标后,下一步的规划是将整个一期的清洁室填满,月产能达到9~9.5万片,预计在明年年底进行设备导入。 “这部分产能一旦形成,产能利用率将很快填满。” 唐均君还称,华虹在无锡有一大块土地,可能会在无锡建造三家类似的晶圆厂,如果需求持续会继续扩建厂房。唐均君表示,无锡12英寸厂在2022年一季度和二季度产能将比今年有两位数增长,不过扩产进程还要受到半导体设备影响,“目前市场上扩产项目很多,设备交期较长,扩产进度主要是设备交期问题,如果设备交期短一点,扩产进度会更快一些。”

事实上,在各大晶圆厂来势汹汹的扩产动作下,作为扩产计划中最大一笔支出,半导体设备俨然成为了“香饽饽”,众厂追抢,但跟随整个产业链缺货脚步,上游设备厂商同样陷入缺料困境。 举例来说,全球芯片检测设备龙头爱德万(Advantest)测试设备所需的芯片采购愈发困难,平常设备交期为3~4个月,现在已延长至约6个月时间。此前国内半导体设备商芯源微也公告,公司“高端晶圆处理设备研发中心项目”所需的部分进口设备和材料无法正常、及时供应,该项目的设备采购以及安装调试工作有所延缓,研发项目开展情况不及预期,公司拟将该项目达到预定可使用状态时间调整至2022年3月31日。 再则,上游材料也同样告急。 例如,此前市场消息称,由于KrF光刻胶产能受限以及全球晶圆厂积极扩产等,占据全球光刻胶市场份额超两成的日本供应商信越化学已经向国内多家一线晶圆厂限制供货KrF光刻胶,且已通知更小规模晶圆厂停止供货KrF光刻胶。

(我为 科技 狂整理)

简介:无锡新洁能功率半导体有限公司是一家专业从事大功率半导体器件与功率集成电路芯片设计的高新技术企业。坐落于无锡(滨湖)国家传感信息中心。目前专注于MOS半导体功率器件(沟槽型大功率MOS器件、超结MOS器件、NPT-IGBT)以及射频(微波)RF-LDMOS器件的设计、生产、测试与质量考核、销售及服务。拥有自主知识产权和“新功率”、“NCEPower”品牌。公司在中国大陆、香港分别建立了设计与运营中心、销售公司以及外包芯片流片基地、成品封装基地、成品测试基地,并有完善的质量控制保证系统,保证产品品质的一致性和稳定性。公司主要团队人员是由志同道合的业界精英融合而成。其中不乏有功底深厚的20多年来一直潜心于功率半导体领域,先后在国内著名企业、新家坡和德国等国外机构从事研发工作的海归“科技领军与创业人才”,也有一批有着近10年经验的年青功率半导体工艺和器件专家。研发团队曾首创两项中国第一:即最先设计并大规模商业化大功率Trench-MOSFET(用于各种电动车控制器、UPS、汽车电子等领域);最先设计四块Masks并大规模商业化中、小功率Trench-MOSFET(广泛用于便携数码产品),并取得多项中国发明专利。NCE依托自身世界领先的设计技术并持续进步以及世界一流的芯片制造、封测技术的大力支持,以够硬的产品应用能力,虔诚的服务态度和迅速的执行力,竭诚为客户提供优质、创新、低成本的功率半导体产品和应用系统。无锡新洁能将以“诚信”对待、忠诚服务于一路相伴走来的所有客户和合作者,建立合作共赢的长期协作关系。无锡新洁能功率半导体有限公司(NCEPowerSemiconductor)是中国现代大功率半导体器件的领航设计与销售企业,专业从事各种大功率半导体器件与功率集成器件设计、生产和销售。目标成为客户全球最具价值的功率半导体器件与服务供应商。公司是中国第一家研发成功并上量销售大功率-超结-MOSFET(SJ-MOSFET)的设计公司,是江苏省重点支持的半导体大功率器件设计高新技术企业。公司紧密结合自身器件与工艺设计技术领先的优势,与国际一流的芯片代工厂、封装、测试代工厂保持密切配合与合作,严谨产品质量控制,保证产品的持续优质和稳定供货。公司产品的特点是:性能与可靠性超越同行,应用偏向高端。注重品牌和信誉。目前专注于超结大功率MOS器件(SuperJunctionMOSFET)、NPT-IGBT、沟槽型大功率MOS器件以及射频(微波)RF-LDMOS器件的研发设计、生产、测试、质量考核、销售与服务。公司立足于自主创新,拥有自主知识产权和致力于“新功率”“NCEPower”自主产品品牌,在全球已取得几十项发明专利。公司在中国大陆、香港分别建立了设计与运营中心、销售公司以及外包芯片流片基地、成品封装基地、成品测试基地,并有完善的质量控制保证体系,确保产品品质的一致性和稳定性。公司技术特点是:精通器件的研发设计;精通8英寸最先进芯片制程工艺;精通器件电参数的稳定性控制;精通产品应用中的可靠性控制。主要团队是由一批国内、外功底深厚的顶级功率半导体实战专家以及年青功率半导体工艺和器件工程师组成。曾在2008年,首创世界第一性价比的20V-30V低压TrenchMOSFET并与同年中国首创并大生产大功率Trench-MOSFET系列产品,应用于电动自行车、电摩、汽车HID灯控制电路。公司技术核心人员被评为姑苏创新创业领军人才、苏州工业园区科技领军人才;现又再创辉煌,成功实现并成为中国第一家500V-650V-900V大功率超结MOSFET研发成功并量产销售的公司。公司注重团体力量和综合竞争力的建设;注重怎样为客户提高市场竞争力;注重公司系统的不断完善。虔诚的服务态度和迅速的执行力,竭诚为客户提供优质、创新、低成本的功率半导体产品和应用系统。公司以诚信对待、忠诚服务一路相伴走来的所有客户和合作者为理念,致力于建立合作共赢的长期协作关系。

法定代表人:朱袁正

成立时间:2009-12-10

注册资本:2000万人民币

工商注册号:320211000154088

企业类型:有限责任公司

公司地址:无锡市高浪东路999号研发大楼8楼

随着绿色低碳战略的不断推进,提升能源利用效率和能源转换效率已经成为各行各业的共识,如何利用现代化新技术建成可循环的高效、高可靠性的能源网络,无疑是当前各国重点关注的问题。

值此背景下,以碳化硅(SiC)、氮化镓(GaN)为代表的第三代半导体成为市场聚焦的新赛道。根据Yole预测数据, 2025年全球以半绝缘型衬底制备的GaN器件市场规模将达到20亿美元,2019-2025年复合年均增长率高达12%! 其中,军工和通信基站设备是GaN器件主要的应用市场,2025年市场规模分别为11.1亿美元和7.31亿美元

全球以导电型碳化硅衬底制备的SiC器件市场规模到2025年将达到25.62亿美元,2019- 2025年复合年均增长率高达30%! 其中,新能源汽车和光伏及储能是SiC器件主要的应用市场, 2025年市场规模分别为15.53亿美元和3.14亿美元。

本文中,我们将针对第三代半导体产业多个方面的话题,与国内外该领域知名半导体厂商进行探讨解析。

20世纪50年代以来,以硅(Si)、锗(Ge)为代的第一代半导体材料的出现,取代了笨重的电子管,让以集成电路为核心的微电子工业的发展和整个IT产业的飞跃。人们最常用的CPU、GPU等产品,都离不开第一代半导体材料的功劳。可以说是由第一代半导体材料奠定了微电子产业的基础。

然而由于硅材料的带隙较窄、电子迁移率和击穿电场较低等原因,硅材料在光电子领域和高频高功率器件方面的应用受到诸多限制。因此,以砷化镓(GaAs)为代表的第二代半导体材料开始崭露头角,使半导体材料的应用进入光电子领域,尤其是在红外激光器和高亮度的红光二极管方面。与此同时,4G通信设备因为市场需求增量暴涨,也意味着第二代半导体材料为信息产业打下了坚实基础。

在第二代半导体材料的基础上,人们希望半导体元器件具备耐高压、耐高温、大功率、抗辐射、导电性能更强、工作速度更快、工作损耗更低特性,第三代半导体材料也正是基于这些特性而诞生。

笔者注意到,对于第三代半导体产业各家半导体大厂的看法也重点集中在 “高效”、“降耗”、“突破极限” 等核心关键词上。

安森美中国汽车OEM技术负责人吴桐博士 告诉笔者: “第三代半导体优异的材料特性可以突破硅基器件的应用极限,同时带来更好的性能,这也是未来功率半导体最主流的方向。” 他表示随着第三代半导体技术的普及,传统成熟的行业设计都会有突破点和优化的空间。

英飞凌科技电源与传感系统事业部大中华区应用市场总监程文涛 则从能源角度谈到,到2025年,全球可再生能源发电量有望超过燃煤发电量,将推动第三代半导体器件的用量迅速增长。 在用电端,由于数据中心、5G通信等场景用电量巨大,节电降耗的重要性凸显,也将成为率先采用第三代半导体器件做大功率转换的应用领域。

第三代半导体材料区别于前两代半导体材料最大的区别就在于带隙的不同。 第一代半导体材料属于间接带隙,窄带隙第二代半导体材料属于直接带隙,同样也是窄带隙二第三代半导体材料则是全组分直接带隙,宽禁带。

和前两代半导体材料相比,更宽的禁带宽度允许材料在更高的温度、更强的电压与更快的开关频率下运行。

随着碳化硅、氮化镓等具有宽禁带特性(Eg>2.3eV)的新兴半导体材料相继出现,世界各国陆续布局、产业化进程快速崛起。具体来看:

与硅相比, 碳化硅拥有更为优越的电气特性 : 

1.耐高压 :击穿电场强度大,是硅的10倍,用碳化硅制备器件可以极大地 提高耐压容量、工作频率和电流密度,并大大降低器件的导通损耗

2.耐高温 :半导体器件在较高的温度下,会产生载流子的本征激发现象,造成器件失效。禁带宽度越大,器件的极限工作温度越高。碳化硅的禁带接近硅的3倍,可以保证碳化硅器件在高温条件下工作的可靠性。硅器件的极限工作温度一般不能超过300℃,而碳化硅器件的极限工作温度可以达到600℃以上。同时,碳化硅的热导率比硅更高,高热导率有助于碳化硅器件的散热,在同样的输出功率下保持更低的温度,碳化硅器件也因此对散热的设计要求更低,有助于实现设备的小型化

3.高频性能 :碳化硅的饱和电子漂移速率是硅的2倍,这决定了碳化硅器件可以实现更高的工作频率和更高的功率密度。基于这些优良的特性,碳化硅衬底的使用极限性能优于硅衬底,可以满足高温、高压、高频、大功率等条件下的应用需求,已应用于射频器件及功率器件。

氮化镓则具有宽禁带、高电子漂移速度、高热导率、耐高电压、耐高温、抗腐蚀、耐辐照等突出优点。 尤其是在光电子器件领域,氮化镓器件作为LED照明光源已广泛应用,还可制备成氮化镓基激光器在微波射频器件方面,氮化镓器件可用于有源相控阵雷达、无线电通信、基站、卫星等军事 或者民用领域氮化镓也可用于功率器件,其比传统器件具有更低的电源损耗。

半导体行业有个说法: “一代材料,一代技术,一代产业” ,在第三代半导体产业规模化出现之前,也还存在着不少亟待解决的技术难题。

第三代半导体全产业链十分复杂,包括衬底→外延→设计→制造→封装。 其中,衬底是所有半导体芯片的底层材料,起到物理支撑、导热、导电等作用外延是在衬底材料上生长出新的半导体晶层,这些外延层是制造半导体芯片的重要原料,影响器件的基本性能设计包括器件设计和集成电路设计,其中器件设计包括半导体器件的结构、材料,与外延相关性很大制造需要通过光刻、薄膜沉积、刻蚀等复杂工艺流程在外延片上制作出设计好的器件结构和电路封装是指将制造好的晶圆切割成裸芯片。

前两个环节衬底和外延生长正是第三代半导体生产工艺及其难点所在。我们重点挑选碳化硅、氮化镓两种典型的第三代半导体材料来看,它们的生产制备到底还面临哪些问题。

从碳化硅来看,还需要“降低衬底生长缺陷,以及提高工艺效率” 。首先碳化硅单晶制备目前最常用的是物理气相输运法(PVT)或籽晶的升华法,而碳化硅单晶在形成最终的短圆柱状之前,还需要通过机械加工整形、切片、研磨、抛光等化学机械抛光和清洗等工艺才能成为衬底材料。

这一机械、化学制造过程存在着加工困难、制造效率低、制造成本高等问题。此外,如果再加上考虑单晶加工的效率和成本问题,那还能够保障晶片具备良好的几何形貌,如总厚度变化、翘曲度、变形,而且晶片表面质量(粗糙度、划伤等)是否过关等,这都是碳化硅衬底制备中的巨大挑战。

此外,碳化硅材料是目前仅次于金刚石硬度的材料,材料的机械加工主要以金刚石磨料为基础切割线、切割刀具、磨削砂轮等工具。这些工具的制备难度大,使用寿命短,加工成本高,为了延长工具寿命、提高加工质量,往往会采用微量或极低速进给量,这就牺牲了碳化硅材料制备的整体生产效率。

对于氮化镓来说,则更看重“衬底与外延材料需匹配”的难题 。由于氮化镓在高温生长时“氮”的离解压很高,很难得到大尺寸的氮化镓单晶材料,当前大多数商业器件是基于异质外延的,比如蓝宝石、AlN、SiC和Si材料衬底来替代氮化镓器件的衬底。

但问题是这些异质衬底材料和氮化镓之间的晶格失配和热失配非常大,晶格常数差异会导致氮化镓衬底和外延层界面处的高密度位错缺陷,严重的话还会导致位错穿透影响外延层的晶体质量。这也就是为什么氮化镓更看重衬底与外延材料需匹配的难点。

在落地到利用第三代半导体材料去解决具体问题时,程文涛告诉OFweek维科网·电子工程, 英飞凌的碳化硅器件所采用的沟槽式结构解决了大多数功率开关器件的可靠性问题。

比如现在大多数功率开关器件产品采用的是平面结构,难以在开关的效率上和长期可靠性上得到平衡。采用平面结构,如果要让器件的效率提高,给它加点电,就能导通得非常彻底,那么它的门级就需要做得非常薄,这个很薄的门级结构,在长期运行的时候,或者在大批量运用的时候,就容易产生可靠性的问题。

如果要把它的门级做的相对比较厚,就没办法充分利用沟道的导通性能。而采用沟槽式的做法就能够很好地解决这两个问题。

吴桐博士则从产业化的角度提出, 第三代半导体技术的难点在于有关设计技术和量产能力的协调,以及对长期可靠性的保障。尤其是量产的良率,更需要持续性的优化,降低成本,提升可靠性。

观察当前半导体市场可以发现,占据市场九成以上的份额的主流产品依然是硅基芯片。

但近些年来,“摩尔定律面临失效危机”的声音不绝于耳,随着芯片设计越来越先进,芯片制造工艺不断接近物理极限和工程极限,芯片性能提升也逐步放缓,且成本不断上升。

业界也因此不断发出质疑,未来芯片的发展极限到底在哪,一旦硅基芯片达到极限点,又该从哪个方向下手寻求芯片效能的提升呢?笔者通过采访发现,国内外厂商在面对这一问题时,虽然都表达出第三代半导体产业未来值得期待,但也齐齐提到在这背后还需要重点解决的成本问题。

“目前硅基半导体从架构上、从可靠性、从性能的提升等方面,基本上已经接近了物理极限。第三代半导体将接棒硅基半导体,持续降低导通损耗,在能源转换的领域作出贡献,” 程文涛也为笔者描述了当前市场上的一种现象:可能会存在一些定价接近硅基半导体的第三代半导体器件,但并不代表它的成本就接近硅基半导体。因为那是一种商业行为,就是通过低定价来催生这个市场。

以目前的工艺来讲,第三代半导体的成本还是远高于硅基半导体 ,程文涛表示:“至少在可见的将来,第三代半导体不会完全取代第一代半导体。因为从性价比的角度来说,在非常宽的应用范围中,硅基半导体目前依然是不二之选。第三代半导体目前在商业化上的瓶颈就是成本很高,虽然在迅速下降,但依然远高于硅基半导体。”

作为中国碳化硅功率器件产业化的倡导者之一,泰科天润同样也表示对第三代半导体产业发展的看好。

虽然碳化硅单价目前比硅高不少,但从系统整体的角度来看,可以节约电感电容以及散热片。如果是大功率电源系统整体角度看成本未必更高,同时还能更好地提升效率。 这也是为什么现阶段虽然单器件碳化硅比硅贵,依然不少领域客户已经批量使用了。

从器件的角度来看,碳化硅从四寸过度到六寸,未来往八寸甚至十二寸发展,碳化硅器件的成本也将大幅度下降。据泰科天润介绍,公司新的碳化硅六寸线于去年就已经实现批量出货,为客户提供更高性价比的产品,有些产品实现20-30%的降价幅度。除此之外,泰科天润耗时1年多成功开发了碳化硅减薄工艺,在Vf水平不变的情况下,可以缩小芯片面积,进一步为客户提供性价比更高的产品。

泰科天润还告诉笔者:“这两年随着国外友商的缺货或涨价,比如一些高压硅器件,这些领域已经出现碳化硅取代硅的现象。随着碳化硅晶圆6寸产线生产技术的成熟,8寸晶圆的发展,碳化硅器件有望与硅基器件达到相同的价格水平。”

吴桐博士认为, 目前来看在不同的细分市场,第三代半导体跟硅基器件是一个很好的互补,也是价钱vs性能的一个平衡。随着第三代半导体的成熟以及成本的降低,最终会慢慢取代硅基产品成为主流方案。

那么对于企业而言,该如何发挥第三代半导体的综合优势呢?吴桐博士表示,于安森美而言,首先是要垂直整合,保证稳定的供应链,可长期规划的产能布局以及达到客观的投资回报率其次是在技术研发上继续发力,比如Rsp等参数,相比行业水准,实现用更小的半导体面积实现相同功能,这样单个器件成本得以优化第三是持续地提升FE/BE良率,等效的降低成本第四是与行业大客户共同开发定义新产品,保证竞争力以及稳定的供需关系最后也是重要的一点,要帮助行业共同成长,蛋糕做大,产能做强,才能使得单价有进一步下降的空间。

第三代半导体产业究竟掀起了多大的风口?根据《2020“新基建”风口下第三代半导体应用发展与投资价值白皮书》内容:2019年我国第三代半导体市场规模为94.15亿元,预计2019-2022年将保持85%以上平均增长速度,到2022年市场规模将达到623.42亿元。

其中,第三代半导体衬底市场规模从7.86亿元增长至15.21亿元,年复合增速为24.61%,半导体器件市场规模从86.29亿元增长至608.21亿元,年复合增速为91.73%。

得益于第三代半导体材料的优良特性,它在 光电子、电力电子、通讯射频 等领域尤为适用。具体来看:

光电子器件 包括发光二极管、激光器、探测器、光子集成电路等,多用于5G通信领域,场景包括半导体照明、智能照明、光纤通信、光无线通信、激光显示、高密度存储、光复印打印、紫外预警等

电力电子器件 包括碳化硅器件、氮化镓器件,多用于新能源领域,场景包括消费电子、新能源汽车、工业、UPS、光伏逆变器等

微波射频器件 包括HEMT(高电子迁移率晶体管)、MMIC(单片微波集成电路)等,同样也是用在5G通信领域,不过场景则更加高端,包括通讯基站及终端、卫星通讯、军用雷达等。

现阶段,欧美日韩等国第三代半导体企业已形成规模化优势,占据全球市场绝大多数市场份额。我国高度重视第三代半导体发展,在研发、产业化方面出台了一系列支持政策。国家科技部、工信部等先后开展了“战略性第三代半导体材料项目部署”等十余个专项,大力支持第三代半导体技术和产业发展。

早在2014年,工信部发布的《国家集成电路产业发展推进纲要》提出设立国家产业投资基金,重点支持集成电路等产业发展,促进工业转型升级,同时鼓励社会各类风险投资和股权投资基金进入集成电路领域在去年全国人大发布《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中,进一步强调培育先进制造业集群,推动集成电路、航空航天等产业创新发展。瞄准人工智能、量子信息、集成电路等前沿领域,实施一批具有前瞻性、战略性的国家重大科技项目。

具体来看当前主要应用领域的发展情况:

1.新能源汽车

新能源汽车行业是未来市场空间巨大的新兴市场,全球范围内新能源车的普及趋势明朗。随着电动汽车的发展,对功率半导体器件需求量日益增加,成为功率半导体器件新的经济增长点。得益于碳化硅功率器件的高可靠性及高效率特性,在车载级的电机驱动器、OBC及DC/DC部分,碳化硅器件的使用已经比较普遍。对于非车载充电桩产品, 由于成本的原因,目前使用比例还相对较低,但部分厂商已开始利用碳化硅器件的优势,通过降低冷却等系统的整体成本找到了市场。

2.光伏

光伏逆变器曾普遍采用硅器件,经过40多年的发展,转换效率和功率密度等已接近理论极限。碳化硅器件具有低损耗、高开关频率、高适用性、降低系统散热要求等优点,将在光伏新能源领域得到广泛应用。例如,在住宅和商业设施光伏系统中的组串逆变器里,碳化硅器件在系统级层面带来成本和效能的好处。

3.轨道交通

未来轨道交通对电力电子装置,比如牵引变流器、电力电子电压器等提出了更高的要求。采用碳化硅功率器件可以大幅度提高这些装置的功率密度和工作效率,有助于明显减轻轨道交通的载重系统。目前,受限于碳化硅功率器件的电流容量,碳化硅混合模块将首先开始替代部分硅IGBT模块。未来随着碳化硅器件容量的提升,全碳化硅模块将在轨道交通领域发挥更大的作用。

4.智能电网

目前碳化硅器件已经在中低压配电网开始了应用。未来更高电压、更大容量、更低损耗的柔性输变电将对万伏级以上的碳化硅功率器件具有重大需求。碳化硅功率器件在智能电网的主要应用包括高压直流输电换流阀、柔性直流输电换流阀、灵活交流输电装置、高压直流断路器、电力电子变压器等装置中。

第三代半导体自从在2021年被列入十四五规划后,相关概念持续升温,迅速成为超级风口,投资热度高居不下。

时常会听到业内说法称,第三代半导体国内外都是同一起跑线出发,目前大家差距相对不大,整个产业发展仍处于爆发前的“抢跑”阶段,对国内而言第三代半导体材料更是有望成为半导体产业的“突围先锋”,但事实真的是这样吗?

从起步时间来看,欧日美厂商率先积累专利布局,比如 英飞凌一直走在碳化硅技术的最前沿,从30年前(1992年)开始包含碳化硅二极管在内的功率半导体的研发,在2001年发布了世界上第一款商业化碳化硅功率二极管 ,此后至今英飞凌不断推出了各种性能优异的碳化硅功率器件。除了产品本身,英飞凌在2018年收购了Siltectra,致力于通过冷切割技术优化工艺流程,大幅提高对碳化硅原材料的利用率,有效降低碳化硅的成本。

安森美也是第三代半导体产业布局中的佼佼者,据笔者了解, 安森美通过收购上游碳化硅供应企业GTAT实现了产业链的垂直整合,确保产能和质量的稳定。同时借助安森美多年的技术积累以及几年前收购Fairchild半导体基因带来的技术补充,安森美的碳化硅技术已经进入第三代,综合性能在业界处于领先地位 。目前已成为世界上少数提供从衬底到模块的端到端碳化硅方案供应商,包括碳化硅球生长、衬底、外延、器件制造、同类最佳的集成模块和分立封装方案。

具体到技术上, 北京大学教授、宽禁带半导体研究中心主任沈波 也曾提出,国内第三代半导体和国际上差距比较大,其中很重要的领域之一是碳化硅功率电子芯片。这一块国际上已经完成了多次迭代,虽然8英寸技术还没投入量产,但是6英寸已经是主流技术,二极管已经发展到了第五代,三极管也发展到了第三代,IGBT也已进入产业导入前期。

另外车规级的碳化硅MOSFET模块在意法半导体率先通过以后,包括罗姆、英飞凌、科锐等国际巨头也已通过认证,国际上车规级的碳化硅芯片正逐渐走向规模化生产和应用。反观国内,目前真正量产的主要还是碳化硅二极管,工业级MOSFET模块估计到明年才能实现规模量产,车规级碳化硅模块要等待更长时间才能量产。

泰科天润也直言,国内该领域仍处于后发追赶阶段:器件方面,从二极管的角度, 国产碳化硅二极管基本上水平和国外差距不大,但是碳化硅MOSFET国内外差距还是有至少1-2代的差距 可靠性方面,国外碳化硅产品市场应用推广较早,积累了更加丰富的应用经验,对产品可靠性的认知,定义以及关联解决可靠性的方式都走得更前一些,国内厂家也在推广市场的过程中逐步积累相关经验产业链方面,国外厂家针对碳化硅的材料优势,相关匹配的产业链都做了对应的优化设计,使之能更加契合的体现碳化硅的材料优势。

OFweek维科网·电子工获悉,泰科天润在湖南新建的碳化硅6寸晶圆产线,第一期60000片/六寸片/年。此产线已经于去年实现批量出货,2022年始至4月底已经接到上亿元销售订单。 作为国内最早从事碳化硅芯片生产研发的公司,泰科天润积累了10余年的生产经验,针对特定领域可以结合自身的研发,生产和工艺一体化,快速为客户开发痛点新品 ,例如公司全球首创的史上最小650V1A SOD123,专门针对解决自举驱动电路已经替换高压小电流Si FRD解决反向恢复的痛点问题而设计。

虽然说IDM方面,我国在碳化硅器件设计方面有所欠缺,少有厂商涉及于此,但后发追赶者也不在少数。

就拿碳化硅产业来看,单晶衬底方面国内已经开发出了6英寸导电性碳化硅衬底和高纯半绝缘碳化硅衬底。 山东天岳、天科合达、河北同光、中科节能 均已完成6英寸衬底的研发,中电科装备研制出6英寸半绝缘衬底。

此外,在模块、器件制造环节我国也涌现了大批优秀的企业,包括 三安集成、海威华芯、泰科天润、中车时代、世纪金光、芯光润泽、深圳基本、国扬电子、士兰微、扬杰科技、瞻芯电子、天津中环、江苏华功、大连芯冠、聚力成半导体 等等。

OFweek维科网·电子工程认为,随着我国对新型基础建设的布局展开和“双碳”目标的提出,碳化硅和氮化稼等第三代半导体的作用也愈发凸显。

上有国家支持政策,下有新能源汽车、5G通信等旺盛市场需求, 我国第三代半导体产业也开始由“导入期”向“成长期”过渡,初步形成从材料、器件到应用的全产业链。但美中不足在于整体技术水平还落后世界顶尖水平好几年,因此在材料、晶圆、封装及应用等环节的核心关键技术和可靠性、一致性等工程化应用问题上还需进一步完善优化。

当前,全球正处于新一轮科技和产业革命的关键期,第三代半导体产业作为新一代电子信息技术中的重点组成部分,为能源革命带来了深刻的改变。

在此背景下,OFweek维科网·电子工程作为深耕电子产业领域的资深媒体,对全球电子产业高度关注,紧跟产业发展步伐。为了更好地促进电子工程师之间技术交流,推动国内电子行业技术升级,我们继续联袂数十家电子行业企业技术专家,推出面向电子工程师技术人员的专场在线会议  「OFweek 2022 (第二期)工程师系列在线大会」  。

本期在线会议将于6月22日在OFweek官方直播平台举办,将邀请国内外知名电子企业技术专家,聚焦半导体领域展开技术交流,为各位观众带来技术讲解、案例分享和方案展示。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/9163375.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存