固体硅胶和液体硅胶的有什么区别?

固体硅胶和液体硅胶的有什么区别?,第1张

一、液体硅胶和固体的外形区别

两者的从外观上可以看出来,一个固态一个液态。

1、液体硅胶就是呈液体状态,具有流动性,它是一种高透明高安全的食品级材料,成型时不添加硫化剂等辅助材料,密封投料成型。

2、固体硅胶就是呈固体态,没有流动性,他也是一种透明的环保材料,成型时需要加硫化剂加快硫化成型时间,敞模投料成型。

二、液体硅胶和固体从使用领域上的区别

1、液态硅胶一般使用于婴儿用品和厨房用品以及医疗用品方面,是可以直接接触食物和人体的。

2、固态硅胶一般使用于生活用品和工业杂件以及汽车配件等方面。

3、液态硅胶和固态硅胶的安全性:液态硅胶是高透明高安全的食品级材料,成型时不添加硫化剂等辅助材料,密封投料成型。固态硅胶是透明的材料,成型时需要加硫化剂加快硫化成型时间,敞模投料成型。

三、液体硅胶和固体硅胶的成型方式的区别

1、液体硅胶是注射成型液体硅橡胶(LSR):全名为注射成型液体硅橡胶,硫化设备为注射成型机。

注射成型机有着工艺流程非常简单(不需高温胶工艺中的配料,炼胶,切料,摆料等人工流程,只需一

个工人取产品即可),产品精确度高(成型之前所有人工程序全部被机器取代),产量高(A/B胶混合在

一定温度下几秒钟成型),省人,省电,省材料等多项优点,能生产所有高温胶生产的产品。

液态硅胶在工业上通常用离子交换法使水玻璃脱钠制硅溶胶。它是半透明的乳白色液体,有较高的稳定性。硅溶胶干燥后即变为多孔的固体。具体成型流程如下:

(1)混炼胶:这种即用型材料可以根据您的加工设备和最终用途进行上色和催化。

(2)基础料:这类有机硅聚合物同样含有补强填料。橡胶基础料可以进一步和颜料和添加剂混炼,形成混炼胶,满足您的色彩和其他制造要求。

(3)液体硅橡胶(LSR):这种双组分液体橡胶体系可以通过泵输入适当的注射成型设备,然后热固化成模压橡胶部件。

(4)氟硅橡胶混炼胶和基础料:氟硅橡胶保持了有机硅的许多关键性质,此外,它还具有优越的耐化学品、燃料及耐油性。

主链由硅氧原子交替组成、在硅原子上带有有机基团的合成橡胶。分子中的有机基团可以是-CH3、-C2H3或-C6H5等,相应称作甲基、乙烯基或甲基苯基硅橡胶。硅橡胶是一种耐高低温(-60~250℃)、耐臭氧化并具有良好电绝缘性能的特种橡胶。

有机硅橡胶是由线性聚硅氧烷混入补强填料,在加热加压条件下硫化生成的特殊合成d性体。它完美地平衡了机械性质和化学性质,因而能满足今天许多苛刻的应用场合要求。

2、固体硅胶成型是原料是一块块固体的,通过混炼机混炼后,裁料机裁成产品和模具合适的大

小以及厚度,后放入模具,压力成型机下一定温度模压成型。脱模时和塑胶产品差不多的,也需要清理模具等。

(1)固态硅胶在工业上是以水玻璃(硅酸钠)为原料,在酸性介质中水解生成凝胶,然后经老化、洗涤、干燥等过程制成硅胶,依据水含量的不同,为半透明或白色固体。市售商品有不规则粒状、球状、微球状硅胶,常用作流化床作业中的催化剂载体。

(2)用作催化剂载体时,通常是将硅胶浸渍于含催化活性组分的溶液中,使溶液吸收于硅胶的孔隙内,经干燥、活化等手续,使活性组分分布于硅胶表面上。硅胶的孔隙结构对制成的负载型催化剂的性质有重要影响,如硅胶的孔容积、孔径分布等。习惯上,将平均孔径小于15~20的硅胶,称细孔硅胶平均孔径大于40~50,称为粗孔硅胶。

(3)但细孔结构不利于反应物分子的扩散,但可将降低催化剂内表面利用率,而且在孔隙深处生成的产物分子也不易逸出孔外,易于造成深度副反应。硅胶的孔结构与制造方法及条件有关,如成胶、老化、洗涤时的pH、温度、时间等。可通过扩孔处理法将市售硅胶扩孔,常用的方法是将其置于热压釜中加水或加含盐的水溶液(如碳酸钠、醋酸钠)热压处理,例如:在320℃、10MPa热压处理可使比表面及平均孔径分别为135m2/g和123的硅胶变为26.9m2/g和508。

光刻胶是一种有机化合物,它受紫外光曝光后,在显影液中的溶解度会发生变化。一般光刻胶以液态涂覆在硅片表面上,曝光后烘烤成固态。 1、光刻胶的作用: a、将掩膜板上的图形转移到硅片表面的氧化层中; b、在后续工序中,保护下面的材料(刻蚀或离子注入)。2、光刻胶的物理特性参数: a、分辨率(resolution)。区别硅片表面相邻图形特征的能力。一般用关键尺寸(CD,Critical Dimension)来衡量分辨率。形成的关键尺寸越小,光刻胶的分辨率越好。 b、对比度(Contrast)。指光刻胶从曝光区到非曝光区过渡的陡度。对比度越好,形成图形的侧壁越陡峭,分辨率越好。 c、敏感度(Sensitivity)。光刻胶上产生一个良好的图形所需一定波长光的最小能量值(或最小曝光量)。单位:毫焦/平方厘米或mJ/cm2。光刻胶的敏感性对于波长更短的深紫外光(DUV)、极深紫外光(EUV)等尤为重要。 d、粘滞性/黏度(Viscosity)。衡量光刻胶流动特性的参数。粘滞性随着光刻胶中的溶剂的减少而增加;高的粘滞性会产生厚的光刻胶;越小的粘滞性,就有越均匀的光刻胶厚度。光刻胶的比重(SG,Specific Gravity)是衡量光刻胶的密度的指标。它与光刻胶中的固体含量有关。较大的比重意味着光刻胶中含有更多的固体,粘滞性更高、流动性更差。粘度的单位:泊(poise),光刻胶一般用厘泊(cps,厘泊为1%泊)来度量。百分泊即厘泊为绝对粘滞率;运动粘滞率定义为:运动粘滞率=绝对粘滞率/比重。单位:百分斯托克斯(cs)=cps/SG。 e、粘附性(Adherence)。表征光刻胶粘着于衬底的强度。光刻胶的粘附性不足会导致硅片表面的图形变形。光刻胶的粘附性必须经受住后续工艺(刻蚀、离子注入等)。 f、抗蚀性(Anti-etching)。光刻胶必须保持它的粘附性,在后续的刻蚀工序中保护衬底表面。耐热稳定性、抗刻蚀能力和抗离子轰击能力。 g、表面张力(Surface Tension)。液体中将表面分子拉向液体主体内的分子间吸引力。光刻胶应该具有比较小的表面张力,使光刻胶具有良好的流动性和覆盖。 h、存储和传送(Storage and Transmission)。能量(光和热)可以激活光刻胶。应该存储在密闭、低温、不透光的盒中。同时必须规定光刻胶的闲置期限和存贮温度环境。一旦超过存储时间或较高的温度范围,负胶会发生交联,正胶会发生感光延迟。3、光刻胶的分类 a、根据光刻胶按照如何响应紫外光的特性可以分为两类:负性光刻胶和正性光刻胶。 负性光刻胶(Negative Photo Resist)。最早使用,一直到20世纪70年代。曝光区域发生交联,难溶于显影液。特性:良好的粘附能力、良好的阻挡作用、感光速度快;显影时发生变形和膨胀。所以只能用于2μm的分辨率。 正性光刻胶(Positive Photo Resist)。20世纪70年代,有负性转用正性。正性光刻胶的曝光区域更加容易溶解于显影液。特性:分辨率高、台阶覆盖好、对比度好;粘附性差、抗刻蚀能力差、高成本。 b、根据光刻胶能形成图形的最小光刻尺寸来分:传统光刻胶和化学放大光刻胶。 传统光刻胶。适用于I线(365nm)、H线(405nm)和G线(436nm),关键尺寸在0.35μm及其以上。 化学放大光刻胶(CAR,Chemical Amplified Resist)。适用于深紫外线(DUV)波长的光刻胶。KrF(248nm)和ArF(193nm)。4、光刻胶的具体性质 a、传统光刻胶:正胶和负胶。光刻胶的组成:树脂(resin/polymer),光刻胶中不同材料的粘合剂,给与光刻胶的机械与化学性质(如粘附性、胶膜厚度、热稳定性等);感光剂,感光剂对光能发生光化学反应;溶剂(Solvent),保持光刻胶的液体状态,使之具有良好的流动性;添加剂(Additive),用以改变光刻胶的某些特性,如改善光刻胶发生反射而添加染色剂等。 负性光刻胶。树脂是聚异戊二烯,一种天然的橡胶;溶剂是二甲苯;感光剂是一种经过曝光后释放出氮气的光敏剂,产生的自由基在橡胶分子间形成交联。从而变得不溶于显影液。负性光刻胶在曝光区由溶剂引起泡涨;曝光时光刻胶容易与氮气反应而抑制交联。 正性光刻胶。树脂是一种叫做线性酚醛树脂的酚醛甲醛,提供光刻胶的粘附性、化学抗蚀性,当没有溶解抑制剂存在时,线性酚醛树脂会溶解在显影液中;感光剂是光敏化合物(PAC,Photo Active Compound),最常见的是重氮萘醌(DNQ),在曝光前,DNQ是一种强烈的溶解抑制剂,降低树脂的溶解速度。在紫外曝光后,DNQ在光刻胶中化学分解,成为溶解度增强剂,大幅提高显影液中的溶解度因子至100或者更高。这种曝光反应会在DNQ中产生羧酸,它在显影液中溶解度很高。正性光刻胶具有很好的对比度,所以生成的图形具有良好的分辨率。 b、化学放大光刻胶(CAR,Chemical Amplified Resist)。树脂是具有化学基团保护(t-BOC)的聚乙烯(PHS)。有保护团的树脂不溶于水;感光剂是光酸产生剂(PAG,Photo Acid Generator),光刻胶曝光后,在曝光区的PAG发生光化学反应会产生一种酸。该酸在曝光后热烘(PEB,Post Exposure Baking)时,作为化学催化剂将树脂上的保护基团移走,从而使曝光区域的光刻胶由原来不溶于水转变为高度溶于以水为主要成分的显影液。化学放大光刻胶曝光速度非常


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/9170850.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存