芯片是怎样做出来的?

芯片是怎样做出来的?,第1张

芯片是怎么制作出来的如下:
一、芯片设计。
芯片属于体积小,但高精密度极大的产品。想要制作芯片,设计是第一环节。设计需要借助EDA工具和一些IP核,最终制成加工所需要的芯片设计蓝图。
二、沙硅分离。
所有的半导体工艺都是从一粒沙子开始的。因为沙子中蕴含的硅是生产芯片“地基”硅晶圆所需要的原材料。所以我们第一步,就是要将沙子中的硅分离出来。
三、硅提纯。
在将硅分离出来后,其余的材料废弃不用。将硅经过多个步骤提纯,已达到符合半导体制造的质量,这就是所谓的电子级硅。
四、将硅铸锭。
提纯之后,要将硅铸成硅锭。一个被铸成锭后的电子级硅的单晶体,重量大约为1千克,硅的纯度达到了999999%。
五、晶圆加工。硅锭铸好后,要将整个硅锭切成一片一片的圆盘,也就是我们俗称的晶圆,它是非常薄的。随后,晶圆就要进行抛光,直至完美,表面如镜面一样光滑。硅晶圆的直径常见的有8英寸(2mm)和12英寸(3mm),直径越大,最终单个芯片成本越低,但加工难度越高。
六、光刻。首先在晶圆上敷涂上三层材料。第一层是氧化硅,第二层是氮化硅,最后一层是光刻胶。再将设计完成的包含数十亿个电路元件的芯片蓝图制作成掩膜,掩膜可以理解为一种特殊的投影底片,包含了芯片设计蓝图,下一步就是将蓝图转印到晶圆上。这一步对光刻机有着极高的要求。紫外线会透过掩膜照射到硅晶圆上的光刻胶上,光刻过程中曝光在紫外线下的光刻胶被溶解掉,清除后留下的图案和掩膜上的一致。用化学物质溶解掉暴露出来的晶圆部分,剩下的光刻胶保护着不应该蚀刻的部分。蚀刻完成后,清除全部光刻胶,露出一个个凹槽。
七、蚀刻与离子注入。首先要腐蚀掉暴露在光刻胶外的氧化硅和氮化硅,并沉淀一层二氧化硅,使晶体管之间绝缘,然后利用蚀刻技术使最底层的硅暴露出来。然后把硼或磷注入到硅结构中,接着填充铜,以便和其他晶体管互连,然后可以在上面再涂一层胶,再做一层结构。一般一个芯片包含几十层结构,就像密集交织的高速公路。
经过上述流程,我们就得到了布满芯片的硅晶圆。之后用精细的切割器将芯片从晶圆上切下来,焊接到基片上,装壳密封。之后经过最后的测试环节,一块块芯片就做好了。

除去硅之外,制造芯片还需要一种重要的材料就是金属。目前为止,铝已经成为制作处理器内部配件的主要金属材料,而铜则逐渐被淘汰,这是有一些原因的,在目前的芯片工作电压下,铝的电迁移特性要明显好于铜。所谓电迁移问题,就是指当大量电子流过一段导体时,导体物质原子受电子撞击而离开原有位置,留下空位,空位过多则会导致导体连线断开,而离开原位的原子停留在其它位置,会造成其它地方的短路从而影响芯片的逻辑功能,进而导致芯片无法使用。这就是许多Northwood Pentium 4换上SNDS(北木暴毕综合症)的原因,当发烧友们第一次给Northwood Pentium 4超频就急于求成,大幅提高芯片电压时,严重的电迁移问题导致了芯片的瘫痪。这就是intel首次尝试铜互连技术的经历,它显然需要一些改进。不过另一方面讲,应用铜互连技术可以减小芯片面积,同时由于铜导体的电阻更低,其上电流通过的速度也更快。
除了这两样主要的材料之外,在芯片的设计过程中还需要一些种类的化学原料,它们起着不同的作用,这里不再赘述。芯片制造的准备阶段在必备原材料的采集工作完毕之后,这些原材料中的一部分需要进行一些预处理工作。而作为最主要的原料,硅的处理工作至关重要。首先,硅原料要进行化学提纯,这一步骤使其达到可供半导体工业使用的原料级别。而为了使这些硅原料能够满足集成电路制造的加工需要,还必须将其整形,这一步是通过溶化硅原料,然后将液态硅注入大型高温石英容器而完成的。
而后,将原料进行高温溶化。中学化学课上我们学到过,许多固体内部原子是晶体结构,硅也是如此。为了达到高性能处理器的要求,整块硅原料必须高度纯净,及单晶硅。然后从高温容器中采用旋转拉伸的方式将硅原料取出,此时一个圆柱体的硅锭就产生了。从目前所使用的工艺来看,硅锭圆形横截面的直径为200毫米。不过现在intel和其它一些公司已经开始使用300毫米直径的硅锭了。在保留硅锭的各种特性不变的情况下增加横截面的面积是具有相当的难度的,不过只要企业肯投入大批资金来研究,还是可以实现的。intel为研制和生产300毫米硅锭而建立的工厂耗费了大约35亿美元,新技术的成功使得intel可以制造复杂程度更高,功能更强大的集成电路芯片。而200毫米硅锭的工厂也耗费了15亿美元。下面就从硅锭的切片开始介绍芯片的制造过程。
单晶硅锭在制成硅锭并确保其是一个绝对的圆柱体之后,下一个步骤就是将这个圆柱体硅锭切片,切片越薄,用料越省,自然可以生产的处理器芯片就更多。切片还要镜面精加工的处理来确保表面绝对光滑,之后检查是否有扭曲或其它问题。这一步的质量检验尤为重要,它直接决定了成品芯片的质量。
单晶硅锭新的切片中要掺入一些物质而使之成为真正的半导体材料,而后在其上刻划代表着各种逻辑功能的晶体管电路。掺入的物质原子进入硅原子之间的空隙,彼此之间发生原子力的作用,从而使得硅原料具有半导体的特性。今天的半导体制造多选择CMOS工艺(互补型金属氧化物半导体)。其中互补一词表示半导体中N型MOS管和P型MOS管之间的交互作用。而N和P在电子工艺中分别代表负极和正极。多数情况下,切片被掺入化学物质而形成P型衬底,在其上刻划的逻辑电路要遵循nMOS电路的特性来设计,这种类型的晶体管空间利用率更高也更加节能。同时在多数情况下,必须尽量限制pMOS型晶体管的出现,因为在制造过程的后期,需要将N型材料植入P型衬底当中,而这一过程会导致pMOS管的形成。
在掺入化学物质的工作完成之后,标准的切片就完成了。然后将每一个切片放入高温炉中加热,通过控制加温时间而使得切片表面生成一层二氧化硅膜。通过密切监测温度,空气成分和加温时间,该二氧化硅层的厚度是可以控制的。在intel的90纳米制造工艺中,门氧化物的宽度小到了惊人的5个原子厚度。这一层门电路也是晶体管门电路的一部分,晶体管门电路的作用是控制其间电子的流动,通过对门电压的控制,电子的流动被严格控制,而不论输入输出端口电压的大小。准备工作的最后一道工序是在二氧化硅层上覆盖一个感光层。这一层物质用于同一层中的其它控制应用。这层物质在干燥时具有很好的感光效果,而且在光刻蚀过程结束之后,能够通过化学方法将其溶解并除去。
光刻蚀这是目前的芯片制造过程当中工艺非常复杂的一个步骤,为什么这么说呢?光刻蚀过程就是使用一定波长的光在感光层中刻出相应的刻痕,由此改变该处材料的化学特性。这项技术对于所用光的波长要求极为严格,需要使用短波长的紫外线和大曲率的透镜。刻蚀过程还会受到晶圆上的污点的影响。每一步刻蚀都是一个复杂而精细的过程。设计每一步过程的所需要的数据量都可以用10GB的单位来计量,而且制造每块处理器所需要的刻蚀步骤都超过20步(每一步进行一层刻蚀)。而且每一层刻蚀的图纸如果放大许多倍的话,可以和整个纽约市外加郊区范围的地图相比,甚至还要复杂,试想一下,把整个纽约地图缩小到实际面积大小只有100个平方毫米的芯片上,那么这个芯片的结构有多么复杂,可想而知了吧。
当这些刻蚀工作全部完成之后,晶圆被翻转过来。短波长光线透过石英模板上镂空的刻痕照射到晶圆的感光层上,然后撤掉光线和模板。通过化学方法除去暴露在外边的感光层物质,而二氧化硅马上在陋空位置的下方生成。
掺杂在残留的感光层物质被去除之后,剩下的就是充满的沟壑的二氧化硅层以及暴露出来的在该层下方的硅层。这一步之后,另一个二氧化硅层制作完成。然后,加入另一个带有感光层的多晶硅层。多晶硅是门电路的另一种类型。由于此处使用到了金属原料(因此称作金属氧化物半导体),多晶硅允许在晶体管队列端口电压起作用之前建立门电路。感光层同时还要被短波长光线透过掩模刻蚀。再经过一部刻蚀,所需的全部门电路就已经基本成型了。然后,要对暴露在外的硅层通过化学方式进行离子轰击,此处的目的是生成N沟道或P沟道。这个掺杂过程创建了全部的晶体管及彼此间的电路连接,没个晶体管都有输入端和输出端,两端之间被称作端口。
重复这一过程
从这一步起,你将持续添加层级,加入一个二氧化硅层,然后光刻一次。重复这些步骤,然后就出现了一个多层立体架构,这就是你目前使用的处理器的萌芽状态了。在每层之间采用金属涂膜的技术进行层间的导电连接。今天的P4处理器采用了7层金属连接,而Athlon64使用了9层,所使用的层数取决于最初的版图设计,并不直接代表着最终产品的性能差异。
接下来的几个星期就需要对晶圆进行一关接一关的测试,包括检测晶圆的电学特性,看是否有逻辑错误,如果有,是在哪一层出现的等等。而后,晶圆上每一个出现问题的芯片单元将被单独测试来确定该芯片有否特殊加工需要。
而后,整片的晶圆被切割成一个个独立的处理器芯片单元。在最初测试中,那些检测不合格的单元将被遗弃。这些被切割下来的芯片单元将被采用某种方式进行封装,这样它就可以顺利的插入某种接口规格的主板了。大多数intel和AMD的处理器都会被覆盖一个散热层。在处理器成品完成之后,还要进行全方位的芯片功能检测。这一部会产生不同等级的产品,一些芯片的运行频率相对较高,于是打上高频率产品的名称和编号,而那些运行频率相对较低的芯片则加以改造,打上其它的低频率型号。这就是不同市场定位的处理器。而还有一些处理器可能在芯片功能上有一些不足之处。比如它在缓存功能上有缺陷(这种缺陷足以导致绝大多数的芯片瘫痪),那么它们就会被屏蔽掉一些缓存容量,降低了性能,当然也就降低了产品的售价,这就是Celeron和Sempron的由来。在芯片的包装过程完成之后,许多产品还要再进行一次测试来确保先前的制作过程无一疏漏,且产品完全遵照规格所述,没有偏差。

你问的是什么芯片?

一般芯片如果没有问题的话,只要是VCC接到了正常的电压下,GND连到了地上就没问题,关键是你供电的VCC千万不能超过正常的供电电压,否则芯片就烧了。

手机不再是单纯的手机,它是有情感的智能机器人,而它的芯片被别人控制,我们不仅仅要学会和人相处,更要学会和手机处理好关系,它一不高兴,就有办法给我们设置阻碍,天下之大,能人倍出,望老天爷快速研究出新的东西来智胜它吧,不想被手机控制,望转发!保护自己自己的隐私是每个公民的权利!

一枚小小的芯片中却拥有20亿个晶体管结构,内部就像是放大了的超级城市一般,其复杂程度难以想象。这样精巧的结构设计是如何被制造出来的呢?

芯片制造最基础的材料竟然是我们常见到的砂子,它的主要成份是二氧化硅,在极高的温度下的还原反应从氧化物之中提炼出高纯度的硅晶体,再制作成硅锭,继而把硅锭切成薄如蝉翼的圆形硅片,被称之为硅晶圆。

首先要对硅晶圆进行光刻,然后在上面涂抹上一层特殊的胶水,再把设计好的拥有几十亿个电路元件的芯片图纸制作成掩模版,所谓掩模版就是一种特殊投影成像的底片,这当中有芯片设计之初的图纸,下面就要将其印制到硅晶圆上了。性能越强劲的芯片需要在越小的晶片上放置更多的电子元件,这也对投射的分辨率有更高的要求,这就如同要刻画出更精密的图纸就要拥有更加小的一支笔才能完成这项任务,投影光源的波长越短,它投射出的画面精细度就越高,这就要求光刻机的光源波长要越短。从紫外线到深紫外线,再到极紫外线,当前只有最先进的极紫外线光刻机才能制造出7纳米和5纳米的芯片。

利用极紫外光将芯片设计图纸投影到硅晶圆的光刻胶模上,此时会发生光化学反应,凡被光所照射的地方便可溶于水,再通过显影清洗后,就形成了光刻电路纹理,在用特制的化学药水进行蚀刻,从而得到各种纵横交织的电路凹槽,再将其中注入相应的杂质粒子,在高温条件下扩散,直到导电性能满足设计的需求,再把之前的一系列流程重复几十次,让晶片具有更复杂的三维构造,最后再通过金属镀膜技术将各层之间的元件相互联通。

整个芯片制造的过程要用到大量精细的光学技术,材料技术和精密的加工技术,其中任何一项技术都是缺一不可的。这里极高精度的光刻机是整个芯片生产过程中的重中之重。当前世界上最为先进的极紫外光刻机为荷兰的ASML公司所制造,拥有超大功率的激光器所发射的脉冲激光可产生极端波长的紫外线,脉冲激光击中极小的液态锡时,瞬间可以将其变成高温等离子电浆,此时可激发出光刻机所需要的极紫外光,再经过一些列的反射镜面送入光刻机的投影镜头,对硅晶圆进行光刻。

光刻机重达200吨,是目前世界上最精密的机器之一,单台售价就高达15亿美元。曾今中国的某公司就向荷兰ASML公司预定了一台极紫外光刻机,但至今也没有成功交付,这其中包括需要通过美国授权的专利技术,光刻机的激光光源系统就是其中之一。

芯片制造业属于资本密集形和高度技术密集形产业,且研发周期漫长,在这条道路上我们还需要不断的 探索 ,但总有一天我们会成功的。华为总裁任正非曾说:“我们的芯片要赶超苹果公司的还需要至少50年的时间。”在面对日新月异的 科技 发展与技术封锁面前,我们无所畏惧,勇往直前!

计算机的工作原理是存储程序和程序控制,电脑上有很多芯片,内存条上一块一块的黑色长条就是芯片,电脑,主板,硬盘,显卡上面都有很多的芯片,电脑芯片其实就是一个电子零件,在电脑芯片上面有非常多的电阻电容以及其他的一些电子元件。

计算机的运行原理是什么?

当电脑运行时,首先从记忆体中提取出一条指令,经控制器解码,根据指令所需,将数据从存贮器中提取出来,经过一定的运算、逻辑运算等处理,并将其传送至记忆体。然后,他又拿出了第二个命令,按照控制器的指示,进行了指定的动作。就这样。直到遇到停止命令为止。程序就像数据存储,按照程序的顺序,一步一步地把指令提取出来,然后按照指令的方式自动地执行,这是电脑的最基本的工作。指令的次序,也就是程序,也就是命令的次序,都是预先通过输入设备传递给计算机的。每一条指示都明确地表明计算机来自何处,要做什么以及将其传送到何处。

计算机里有芯片吗?

电脑上的芯片很多,计算机芯片实际上是一种由无数电阻电容和其它一些小型部件组成的计算机芯片。这台计算机上的芯片很多,每一条都是一条黑色的芯片,主板、硬盘、显卡等都有大量的芯片, CPU也是计算机芯片,只是要比一般的计算机要复杂的多。它可以做很多计算机的工作,例如 *** 作,数据处理,数据传输,存储,分析等等。

温馨小提示:

CPU是计算机的核心,而 CPU则是计算机的核心。但是芯片的种类很多, CPU、显卡、声卡等等,都是用来做计算的,整个电脑上几乎所有的设备都是为了配合芯片而存在的。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/yw/13158706.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-13
下一篇 2023-06-13

发表评论

登录后才能评论

评论列表(0条)

保存