怎样求数据的方差与期望

怎样求数据的方差与期望,第1张

直接根据期望与方差的计算公式就可以如图求出期望是1,方差是1/6。

(x-Ex)²f(x)从负无穷到正无穷积分

E(X)就是X的平均值

参数为2的泊松分布,根据公式可知Eξ=Dξ=2,所以D(2ξ)=4Dξ=8。

密度函数设成f(x,y) 就相当于上文(2/3)(1/3)

(重积分)xf(x,y)就是E(X)

(重积分)yf(x,y)就是E(Y)

(重积分)xyf(x,y)就是E(XY)

扩展资料:

(当且仅当X取常数值E(X)时的概率为1时,D(X)=0。)

注:不能得出X恒等于常数,当x是连续的时候X可以在任意有限个点取不等于常数c的值。

D(aX+bY)=a2DX+b2DY+2abCov(X,Y)。

方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差,记作S2。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。

参考资料来源:百度百科-方差

代入公式。在[a,b]上的均匀分布,期望=(a+b)/2,方差=[(b-a)^2]/2。代入直接得到结论。如果不知道均匀分布的期望和方差公式,只能按步就班的做:

期望:

EX=∫{从-a积到a} xf(x) dx
=∫{从-a积到a} x/2a dx
=x^2/4a |{上a,下-a}
=0

E(X^2)=∫{从-a积到a} (x^2)f(x) dx
=∫{从-a积到a} x^2/2a dx
=x^3/6a |{上a,下-a}
=(a^2)/3

方差:
DX=E(X^2)-(EX)^2=(a^2)/3

扩展资料:

离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。

变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数35、无理数,因而k是离散型随机变量。

如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。

例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数35、无理数等,因而称这随机变量是连续型随机变量。

由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。

更准确来说,如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。

连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件

参考资料来源:百度百科-数学期望

数学期望就是平均值,x_=(x1+x2+x3+……+xn)/n;
方差就是实际值与期望值之差平方的期望值,=[(x1-x_)^2+(x2-x_)^2++(xn-x_)^2]/n

方程D(X)=E{[X-E(X)]^2}=E(X^2) - [ E(X)]^2,其中 E(X)表示数学期望。

若x1,x2,x3xn的平均数为m

则方差s^2=1/n[(x1-m)^2+(x2-m)^2++(xn-m)^2]

方差即偏离平方的均值,称为标准差或均方差,方差描述波动程度。

对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。

离散型:

如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。

几何分布的期望是1/p,方差公式推导为s^2=[(x1-x)^2+(x2-x)^2+(xn-x)^2]/(n),其中x为平均数。

相关介绍:

几何分布(Geometric distribution)是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的几率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。

在伯努利试验中,成功的概率为p,若ξ表示出现首次成功时的试验次数,则ξ是离散型随机变量,它只取正整数,且有P(ξ=k)=(1-p)的(k-1)次方乘以p (k=1,2,…,0<p<1),此时称随机变量ξ服从几何分布。它的期望为1/p,方差为(1-p)/(p的平方)。

求几何分布的期望公式:Eε=1/p。在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/yw/13171101.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-15
下一篇 2023-06-15

发表评论

登录后才能评论

评论列表(0条)

保存