体内药物分析中为何要处理理生物样品中的蛋白质?又该如何处理生物样品中的蛋白质

体内药物分析中为何要处理理生物样品中的蛋白质?又该如何处理生物样品中的蛋白质,第1张

生物样品的前处理涉及很多方面,但主要应考虑生物样品的种类,被测定药物的性质和测定方法三个方面的问题。
样品于测定前一般说来,放射免疫测定法由于具有较高的灵敏度和选择性,因此当初步除去主要干扰物质之后即可直接测定微量样品;而对灵敏度和专属性较差的紫外分光光度法,分离要求就要相应高一些;至于常用的高效液相色谱法,为防止蛋白质等杂质沉积在色谱柱上,上柱前需对生物样品进行去蛋白,有时对被测组分进行提取、制备衍生物等前处理。
样品处理步骤与分析方法的选择—(一)去除蛋白质
在测定血样时,首先应去除蛋白质。去除蛋白质可使结合型的药物均出来,以便测定药物的总浓度;去除蛋白质也可预防提取过程中蛋白质发泡,减少乳化的形成,以及可以保护仪器性能(如保护HPLC柱不被沾污),延长使用期限。去除蛋白法有以下几种。
1加入与水相混溶的有机溶剂加入水溶性的有机溶剂;可使蛋白质的分子内及分子间的氢键发生变化而使蛋白质凝聚,使与蛋白质结合的药物释放出来。
2加入中性盐加入中性盐,使溶液的离子强度发生变化。中性盐能将与蛋白质水合的水置换出来,从而使蛋白质脱水而沉淀。
3加入强酸当pH低于蛋白质的等电点时,蛋白质以阳离子形式存在。此时加入强酸,可与蛋白质阳离子形成不溶住盐而沉淀。
5酶解法在测定一些酸不稳定及蛋白结合牢的药物时,常需用酶解法。最常用的酶是蛋白水解酶中的枯草菌溶素。它不仅可使组织酶,并可使药物析出。
酶解法的优点是:可避兔某些药物在酸及高温下降解:对与蛋白质结合牢的药物(如保泰松、苯妥英纳),可显著改善回收率;可用有机溶剂直接提取酶解液而无乳化现象生成,当采用HPLC法检测时,无需再进行过多的净化 *** 作。酶解法的主要问题是不适用于在碱性下易水解的药物。
(二)缀合物的水解
尿中药物多数呈缀合状态。由于缀合物较原型药物具有较大的极性,不易被有机溶剂提取。有些药物仅需较温和条件即可使药物游离,有些则需较剧烈的方法,常用酸水解或酶水解的方法。
(三)分离、纯化与浓集
对于大多数药物而言,生物样品的分析通常由两步组成:样品的前处理(分离、纯化、浓集)和对最终提取物的仪器分析。
提取法是应用最多的分离、纯化方法。提取的目的是为了从大量共存物中分离出所需要的微量组分----药物及其代谢物,并通过溶剂的蒸发使样品得到浓集。提取法包括液-液提取法和液-固提取法。
1液-液提取法(liquid-liquidextraction,LLE)
多数药物是亲脂性的,在适当的溶剂中的溶解度大于水相中的溶解度,而血样或尿样中含有的大多数内源性杂质是强极性的水溶性物质。因而用有机溶剂提取一次即可除去大部分杂质,从大量的样品中提取药物经浓集后作为分析用样品。
2液-固提取法(liquid-solidextration,LES)
液-固提取法是近十几年来在纯化生物样品时被广泛采用的方法。也可以认为是规模缩小的柱色谱法。这种方法是应用液相色谱法原理处理样品。将具有吸附、分配及离子交换性质的、表面积大的担体作为萃取剂填入小柱,以溶剂淋洗后,将生物样品通过,使其药物或杂质保留在担体上,用适当溶剂洗去杂质,再用适当溶剂将药物洗脱下来。
(四)化学衍生化
分离前将药物进行化学衍生化的目的是:(1)使药物变成具有能被分离的性质;(2)提高检测灵敏度;(3)增强药物的稳定性;(4)提高对光学异构体分离的能力等。
药物分子中含有活泼H者均可被化学衍生化,如含有-COOH、-OH、NH2、、-NH-、-SH等官能团的药物都可被衍生化。
化学衍生化对GC和HPLC尤为重要。
1GC中化学衍生化法药物的化学衍生化前处理对GC十分必要,衍生化可使药物分子中的极性基团,如羟基、氨基、羧基等变成无极性的、易于挥发的药物,从而使GC的温度不必很高即可适合GC的分析要求。主要的衍生化反应有烷基化(alkylations)、酰化(acrylations)、硅烷化(silylations)等。其中已硅烷化用得最广泛。
常用的烷基化试剂有碘甲烷(CHI)、叠氮甲烷(CHN2)、氢氧化三甲基苯胺(TMAH)等;常用得酰化试剂有:乙酸酐、丙酸酐等;硅烷化试剂有:三甲基氯硅烷(TMCS)、双-三甲基硅烷乙酰胺(BSA)、双-三甲基硅烷三氟乙酰胺(BSTFA)、三甲基硅烷咪唑(IMTS)等。
具有光学异构体的药物,由于R(-)与S(+)构型不同,使之具有不同的药效和药动学特性,因此,异构体的分离也是十分重要的。分离光学异构体的方法之一,就是采用不对称试剂,使其生成非对映异构体衍生物,然后用GC法或HPLC法进行分析测定。常用的称试剂有:(S)-N-三氟乙酰脯胺酰氯、(S)-N-五氟乙酰脯胺酰氯等。 #\xJxT\
2HPLC中化学衍生化法当采用HPLC法时,其衍生化的目的是为了提高药物的检测灵敏度。一些在紫外、可见光区没有吸收或者摩尔吸收系数小的药物,可以使其与衍生成对可见-紫外检测器、荧光检测器及电化学检测器等具有高灵敏度的衍生物。
化学衍生化包括柱前衍生化和柱后衍生化两种方法。由于柱前衍生化法是在分离前使药物与衍生化试剂反应,故与药物具有相同官能团的杂质也会同样生成衍生,这样就有可能妨碍药物的检测。同时,如果杂质含量多时,药物与衍生化试剂的反应率降低,因此,应尽可能将药物进行精制后再衍生化。柱后衍生化是药物经色谱柱分离之后进行的,所以可形成对检测器具有高灵敏度的衍生物,从而提高了选择性。HPLC常用的衍生化试剂有邻苯二醛、丹酰氯、荧胺等。
在测定生物样品中药物及其代谢物时,样品的前处理是十分重要的。除了少数情况,将体液经简单处理后进行直接测定外,一般要在测定之前进行样品的前处理,即进行分离、纯化、浓集,必要时还需对待测组分进行化学衍生化,从而为测定创造良好的条件。生物样品进行前处理的目的在于:①药物进入体内后,经吸收、分布、代谢,然后排出体外。在体液、组织和排泄物中除了游离型(原型)药物之外,还有药物的代谢物、药物与蛋白质形成的结合物、以及药物或其代谢物与内源性物质,如葡萄糖醛酸、硫酸形成的葡萄糖醛酸甙(gl uronides)、硫酸酯(sulphates)缀合物等多种形式存在,需要分离后测定药物及代谢物;②生物样品的介质组成比较复杂。如在血清中既含有高分子的蛋白质和低分子的糖、脂肪、尿素等有机化合物,也含有Na+、K+、X-等无机化合物]。其中影响最大的是蛋白质,若用HPLC法测定药物浓度时,蛋白质会沉积在色谱柱上发生堵塞,严重影响分离效果。因此,为了保护仪器,提高测定的灵敏度,必须进行除蛋白等前处理。
一、常用样品的种类、采集和贮藏
生物样品包括各种体液和组织,但实际上最常用的是比较容易得到的血液(血浆、血清、金血)、尿液、唾液。在一些特定的情况下选用乳汁、脊髓液、精液等。下面仅介绍常用的血样、尿样及唾液。
(一)血样 G\­(9M^6@y!
血浆(plasma)和血清(serum)是最常用的生物样品。测定血中药物浓度通常是指测定血浆或血清中的药物浓度,而不是指含有血细胞的全血中的药物浓度。一般认为,当药物在体内达到稳定状态时,血浆中药物浓度与药物在作用点的浓度紧密相关,即血浆中的药物浓度反映了药物在体内(靶器官)的状况,因而血浆浓度可作为作用部位药物浓度的可靠指标。
供测定的血样应能代表整个血药浓度,因而应待药物在血液中分布均匀后取样。动物实验时,可直接从动脉或心脏取血。对于病人,通常采取静脉血,有时根据血药浓度和分析方法灵敏度,也可用毛细管采血。由采集的血液制取血浆或血清。
血浆的制备 将采取的血液置含有抗凝剂(如:肝萦、草酸盐、拘橡酸盐、EDTA、氟化钠等)的试管中,混合后,以2500~3000rpm离心5min使与血细胞分离,分取上清液即为血浆。
血清的制备 将采取的血样在室温下至少放置30min到1h,待凝结出血饼后,用细竹捧或玻璃棒轻轻地剥去血饼,然后以2000~3000rpm离心分离5~10min,分取上清液.即为血清。
血浆比血清分离快,而且制取的量多,其量约为全血的一半。但由于所用抗凝剂的种类不同,用血浆测定药物浓度有时不一致;血清的获取量小,但血清成分更接近于组织液的化学成分,测定血清中有关物质的含量,比全血更能反映机体的具体情况;同时,药物与纤维蛋白几乎不结合,因此,血浆及血清中的药物浓度测定值通常是相同的。基于上述原因,现在国外多采用“专用血清”来测定药物的浓度。
对大多数药物来说,血浆浓度与红细胞中的浓度成正比,所以测定全血也不能提供更多的数据,而全血的净化较血浆和血清更为麻烦,尤其是溶血后,血色素会给测定带来干扰。但在个别情况下也有采用全血测定药物浓度的。例如氯噻酮可与红细胞结合,其动力学行为与在血浆中不同,在血细胞的药物浓度比血浆药物浓度大50~100倍;又如一些三环降压药物,对个别患者来说,在血浆和红细胞的分配比率不是一个常数,因此宜采用全血进行测定。
全血(Whole blood)也应加入抗凝剂混合,防止凝血后影响测定。血样的采取量受到一定限制,特别是间隔比较短的多次取样,患者不易配合。过去一般取1~2ml。随着高灵敏度测定方法的建立,取量可减少到1ml以下。采取静脉血时,目前通行的方法是用注射器直接从静脉抽取,然后置试管中:采取毛细管取血时,应用毛细管或特殊的微量采血管采取。采取血样时,应由从事医疗工作的医生、护士或者临床检查技师实施,药剂师等不能进行采血工作。
血样的采血时间间隔应随测定目的的不同而异。例如:进行药物动力学参数的测定时,需给出药物在体内的药物浓度.时间曲线。应根据动力学曲线模型〈单室还是双室)、给药方式来确定取样间隔和次数,主要应在曲线首尾及峰值附近或浓度变化较大处取祥。采样次数示意图见
如进行治疗药物浓度监测(therapeuticdrug monitoring,TDM)时,则应在血中药物浓度达到稳态后才有意义。但每种药物的半衰期不同,因此达到稳态的时间也不间,取样时间也随之不同。药物进入体内后,大多数很快与血浆中的蛋白质(白蛋白、球蛋白)结合成结合型,并与未结合的游离型药物处于平衡状态而存在。结合型药物(bound型)不能通过血管壁,而游离型药物(free型)能够到达药物作用部位,因此可以说药物疗效与游离型药物浓度有着比较密切的关系,当然最理想的是测定游离型药物。由于测定游离型药物必须经过“超速离心”或“超滤法”等复杂的分离 *** 作,又因药物的蛋白结合率没有很大的个体差异,通常血药总浓度(结合型与游离的总和)可以有效表示游离药物的浓度,因此,大多数的检验室不测定游离型药物,而是测定药物的总浓度。
但某些疾病可改变药物与血浆蛋白的结合率,如肝硬化病人奎尼丁的游离型药物分数几乎增加三倍;肾病时,苯妥英、水杨酸、安妥明等的血浆蛋白结合卒明显下降。有些药物血浆蛋白结合率存在着很大的个体差异,如奎尼丁的血浆蛋白结合率的范围为50%~90%,不同个体问游离药物浓度差达10倍。也就是说在肝硬化、肾功能不全、肾病变、低营养等状态下,血中白蛋白浓度显著减少,药物的蛋白结合率下降,游离型药物浓度上升,此时应测定游离型药物浓度。
采取血样后,应及时分离血浆或血清,并最好立即进行分析。如不能立即测定时,应妥善储存。血浆或血清样品不经蒸发、浓缩,必须置硬质玻璃试管中完全密塞后保存。短期保存时置冰箱(4℃)中,长期保存时要在冷冻橱(库)(-20℃)中冷冻保存。
要注意采血后及时分离出血浆或血清再进行储存。若不预先分离,血凝后冰冻保存,则因冰冻有时引起细胞溶解从而妨碍血浆或血清的分离或因溶血影响药物浓度变化。
(二)唾液
唾液由腮腺、颌下腺、舌下腺和口腔粘膜内许多散在的小腺体分泌液混合组成的,平时所说的唾液就是指此混合液。一般成人每天分泌1~15ml,但个体差异大,即使是同-个人每日之内、每日之间也有变动;各腺体分泌的唾液组成也会有很大差别。对口腔粘膜给予机械的或化学的剌激时,会影响各唾液腺的分泌;视觉、听觉、嗅觉等剌激所产生的条件反射以及思维、情绪也会影响唾液腺的分泌;随年龄不同,唾液的分泌量也不同:小儿的唾液分泌量多,老年人的分泌量减少。
唾液的相对密度为1003~1008;pH值在62~76之间变动,分泌量增加时趋向碱性而接近血液的pH值;通常得到的唾液含有粘蛋白,其粘度是水的19倍。
唾液的采集应尽可能在剌激少的安静状态下进行。一般在漱口后15min收集。分泌量多的,可以将自然贮存于口腔内的唾液吐入试管中,1min内约可取1ml的唾液。必要时也可转动舌尖,以促进唾液的分泌。采集的时间至少要10min。采集后立即测量其除去泡沫部分的体积。放置后分为泡沫部分、透明部分及灰乳白色沉淀部分三层。分层后,以3000rpm离心分离10min,取上清液作为药物浓度测定的样品。也可以采用物理的(如嚼石蜡块、橡胶、海绵)或化学的(如酒石酸)等方法剌激,使在短时间内得到大量的唾液。但另一方面,这样做往往使唾液中的药物浓度受到影响。特殊需要时,可以采集腮腺、颌下腺及舌下腺分泌的单一唾液。这种单一唾液的采集必须采用特殊的唾液采集器来收集。 ~6["b\}iY\
唾液中含有粘蛋白,唾液的粘度由粘蛋白的含量多少而定。粘蛋白是在唾液分泌后,受唾液中酶催化而生成的。为阻止粘蛋白的生成,应将唾液在4℃以下保存。如果分析时没有影响,则可用碱处理唾液,使粘蛋白溶解而降低粘度。唾液在保存过程中,会放出二氧化碳而使pH值升高,因此,需要测定唾液的pH值时,应在取样的当时为好。冷藏保存唾液时,解冻后有必要将容器内唾液充分搅匀后再用,不然测定结果会产生误差。
用唾液作为样品测定药物浓度有几个优点:与采取血样不同,患者自己可以不受时间和地点的限制,很容易地反复采集;采集时无痛苦无危险;有些唾液中药物浓度可以反映血浆中游离型药物浓度。但另一方面,由于唾液是由腮腺、颌下腺及舌下腺等各腺体分泌的组成不同的混合液体,其组成也会发生经时变动;因此,唾液中的药物浓度与血浆中的游离型药物浓度相比就容易变动;而且唾液中药物浓度与血浆中药物浓度的比值〈S/P)只有少数药物是恒定值;有些与蛋白结合率较高的药物,药物在唾液中的浓度比血浆浓度低得多,需要高灵敏度的分析方法才能检测;对有些患者(如癫痫、昏迷)不能采集唾液样品。最后应该指出的是:目前所指的血浆或血清浓度的治疗范围,都是指血浆或血清中的总浓度(游离型和结合型),因此,只有知道唾液中药物浓度与血浆中药物浓度有-定的比值时,唾液中药物浓度的监测才有意义,并且应该先求出具体患者的比值(S/P)。
(三)尿液
采用尿样测定药物浓度的目的与血液、唾液样品不同。尿药测定主要用于药物剂量回收研究、尿清除率、生物利用度的研究,并可推断患者是否违反医嘱用药,同时根据药物剂量回收研究可以预测药物的代谢过程及测定药物的代谢类型(代谢速率,MR)等。
体内药物清除主要是通过尿液排出,药物可以原型(母体药物)或代谢物及其缀合物(conjugete)等形式排出。尿液中药物浓度较高,收集量可以很大,收集也方便。但尿液浓度通常变化很大。尿液主要成分是水、含氮化合物(其中大部分是尿素)及盐类。
健康人排出的尿液是淡或黄褐色的,成人一日排尿量为1~5L,尿液相对密度1015~1020,pH值在48~80之间。放置后会析出盐类,并有细菌繁殖、固体成分的崩解,因而使尿液变混浊。由于这些原因,必须加入防腐剂保存。采集的尿是自然排尿。尿包括随时尿、晨尿、白天尿、夜间尿及时间尿几种。测定尿中药物浓度时应采用时间尿,时间尿以外的尿不可能推断全尿中药物的排泄浓度和药物总量。因此,测定尿中药物的总量时,将一定时间内(如8h、12h或24h等)排泄的尿液全部储在起来,并记录其体积,取其一部分测定药物浓度,然后乘以尿量求得排泄总量。如采集24h的尿液时,一般在上午8点让患者排尿并弃去不要,之后排出的尿液全部储存于干净的容器,中,直到次日上午8点再让患者排尿,并加入容器中。将此容器中盛的尿液做为检液。采集24h尿液时,常用2L容量的带盖的广口玻璃瓶,其体和可能会有士100ml的误差,因此,需再用量筒准确地测量储尿量。采集一定时间内的时间尿液时,常用涂蜡的一次性纸杯或用玻璃杯,并用量筒准确量好体积放入储尿瓶,并做好记录。
尿液中药物浓度的改变不能直接反映血药浓度,即P与血药浓度相关性差;受二试者的肾功能正常与否直接影响药物排泄,因而肾功能不良者不宜采用尿样;婴儿的排尿时间难于掌握;尿液不易采集完全并不易保存。这些是尿样的缺点。
采集的尿样应立即测定。若收集24h的尿液不能立即测定时,应加入防腐剂置冰箱中保存。常用防腐剂有:甲苯、二甲苯、氯仿、麝香草酚以及醋酸、浓盐酸等。利用甲苯等可以在尿液的表面形成薄膜,醋酸等可以改变尿液的酸碱性来抑制细菌的生长。保存时间为24~36h,可置冰箱(4℃)中,长时间保存时,应冰冻(-20℃)。
本回答

一。蛋白质沉淀方法
1中性盐盐析法
⑴在一定的
ph值及温度条件下,改变盐的浓度(即离子强度)达到沉淀的目的,称为“ks”分级盐析法。
(ks盐析:固定ph,
温度,改变盐浓度)
⑵在一定的离子强度下,改变溶液的ph值及温度,达到沉淀的目的,称为“β”分级盐析法。
(β盐析:固定离子强度,改变ph及温度。)
2等电点沉淀法
蛋白质等电点沉淀法是基于不同蛋白质离子具有不同等电点这一特性,依次改变溶液ph值的办法,将杂蛋白沉淀除去,最后获得目标产物。
3有机溶剂沉淀法
许多能与水互溶的有机溶剂如乙醇、丙酮、甲醇和乙腈,常用于低盐浓度下沉淀蛋白质。
4非离子型聚合物沉淀法
20世纪60年代非离子型聚合物开始用于分离血纤维蛋白原和免疫球蛋白,从此高相对分子质量非离子聚合物沉淀蛋白质的方法被广泛使用,如:聚乙二醇(peg)、聚乙烯吡咯烷酮(pvp)、葡聚糖等。
5金属沉淀法
能与羧基、胺基等含氮化合物以及含氮杂环化合物强烈结合的金属离子,如:mn2+、fe2+、co2+、ni2+、cu2+、zn2+、cd2+;
能与羧酸结合而不与含氮化合物结合的金属离子,如:ca2+、ba2+、mg2+、pb2+;
与巯基化合物强烈结合的金属离子,如:hg2+、ag+、pb2+。
实际使用时,金属离子的浓度常为002
mol/l。
6亲和沉淀
初始阶段:将一个目标蛋白质与键合在可溶性载体上的亲和配体络合成沉淀;
所得沉淀物用一生中适当的缓冲溶液进行洗涤,洗去可能存在的杂质;
用一种适当的试剂将目标蛋白质从配体中离解出来。
7选择性变性沉淀法
(1)例如对于α-淀粉酶等热稳定性好的酶,可以通过加热进行热处理,使大多数杂蛋白受热变性沉淀而被除去。
(2)根据欲分离物质所含杂质的特性,通过改变ph值或加进某些金属离子等使杂蛋白变性沉淀而被除去。
8反胶束萃取蛋白质
菌体细胞提取
固液分离是生物产品生产中的重要单元 *** 作。培养基、发酵液、某些中间产品和半成品等都需进行固液分离。发酵液由于种类多、粘度大及成分复杂,其固液分离最为困难。
固液分离的方法很多,生物工业中常规的方法有分离筛、重力沉降、浮选分离、离心分离和过滤等,其中用于发酵液固液分离的方法主要是离心分离和过滤。
二。超滤膜滤去。

一、基质(担体)
HPLC填料可以是陶瓷性质的无机物基质,也可以是有机聚合物基质。无机物基质主要是硅胶和氧化铝。无机物基质刚性大,在溶剂中不容易膨胀。有机聚合物基质主要有交联苯乙烯-二乙烯苯、聚甲基丙烯酸酯。有机聚合物基质刚性小、易压缩,溶剂或溶质容易渗入有机基质中,导致填料颗粒膨胀,结果减少传质,最终使柱效降低。
1.基质的种类
1)硅胶
硅胶是HPLC填料中最普遍的基质。除具有高强度外,还提供一个表面,可以通过成熟的硅烷化技术键合上各种配基,制成反相、离子交换、疏水作用、亲水作用或分子排阻色谱用填料。硅胶基质填料适用于广泛的极性和非极性溶剂。缺点是在碱性水溶性流动相中不稳定。通常,硅胶基质的填料推荐的常规分析pH范围为2~8。
硅胶的主要性能参数有:
①平均粒度及其分布。
②平均孔径及其分布。与比表面积成反比。
③比表面积。在液固吸附色谱法中,硅胶的比表面积越大,溶质的k值越大。
④含碳量及表面覆盖度(率)。在反相色谱法中,含碳量越大,溶质的k值越大。
⑤含水量及表面活性。在液固吸附色谱法中,硅胶的含水量越小,其表面硅醇基的活性越强,对溶质的吸附作用越大。
⑥端基封尾。在反相色谱法中,主要影响碱性化合物的峰形。
⑦几何形状。硅胶可分为无定形全多孔硅胶和球形全多孔硅胶,前者价格较便宜,缺点是涡流扩散项及柱渗透性差;后者无此缺点。
⑧硅胶纯度。对称柱填料使用高纯度硅胶,柱效高,寿命长,碱性成份不拖尾。
2)氧化铝
具有与硅胶相同的良好物理性质,也能耐较大的pH范围。它也是刚性的,不会在溶剂中收缩或膨胀。但与硅胶不同的是,氧化铝键合相在水性流动相中不稳定。不过现在已经出现了在水相中稳定的氧化铝键合相,并显示出优秀的pH稳定性。
3)聚合物
以高交联度的苯乙烯-二乙烯苯或聚甲基丙烯酸酯为基质的填料是用于普通压力下的HPLC,它们的压力限度比无机填料低。苯乙烯-二乙烯苯基质疏水性强。使用任何流动相,在整个pH范围内稳定,可以用NaOH或强碱来清洗色谱柱。甲基丙烯酸酯基质本质上比苯乙烯-二乙烯苯疏水性更强,但它可以通过适当的功能基修饰变成亲水性的。这种基质不如苯乙烯-二乙烯苯那样耐酸碱,但也可以承受在pH13下反复冲洗。
所有聚合物基质在流动相发生变化时都会出现膨胀或收缩。用于HPLC的高交联度聚合物填料,其膨胀和收缩要有限制。溶剂或小分子容易渗入聚合物基质中,因为小分子在聚合物基质中的传质比在陶瓷性基质中慢,所以造成小分子在这种基质中柱效低。对于大分子像蛋白质或合成的高聚物,聚合物基质的效能比得上陶瓷性基质。因此,聚合物基质广泛用于分离大分子物质。
2.基质的选择
硅胶基质的填料被用于大部分的HPLC分析,尤其是小分子量的被分析物,聚合物填料用于大分子量的被分析物质,主要用来制成分子排阻和离子交换柱。
二、化学键合固定相
将有机官能团通过化学反应共价键合到硅胶表面的游离羟基上而形成的固定相称为化学键合相。这类固定相的突出特点是耐溶剂冲洗,并且可以通过改变键合相有机官能团的类型来改变分离的选择性。
1.键合相的性质
目前,化学键合相广泛采用微粒多孔硅胶为基体,用烷烃二甲基氯硅烷或烷氧基硅烷与硅胶表面的游离硅醇基反应,形成Si-O-Si-C键形的单分子膜而制得。硅胶表面的硅醇基密度约为5个/nm2,由于空间位阻效应(不可能将较大的有机官能团键合到全部硅醇基上)和其它因素的影响,使得大约有40~50%的硅醇基未反应。
残余的硅醇基对键合相的性能有很大影响,特别是对非极性键合相,它可以减小键合相表面的疏水性,对极性溶质(特别是碱性化合物)产生次级化学吸附,从而使保留机制复杂化(使溶质在两相间的平衡速度减慢,降低了键合相填料的稳定性。结果使碱性组分的峰形拖尾)。为尽量减少残余硅醇基,一般在键合反应后,要用三甲基氯硅烷(TMCS)等进行钝化处理,称封端(或称封尾、封顶,end-capping),以提高键合相的稳定性。另一方面,也有些ODS填料是不封尾的,以使其与水系流动相有更好的"湿润"性能。
由于不同生产厂家所用的硅胶、硅烷化试剂和反应条件不同,因此具有相同键合基团的键合相,其表面有机官能团的键合量往往差别很大,使其产品性能有很大的不同。键合相的键合量常用含碳量(C%)来表示,也可以用覆盖度来表示。所谓覆盖度是指参与反应的硅醇基数目占硅胶表面硅醇基总数的比例。
pH值对以硅胶为基质的键合相的稳定性有很大的影响,一般来说,硅胶键合相应在pH=2~8的介质中使用。
2.键合相的种类
化学键合相按键合官能团的极性分为极性和非极性键合相两种。
常用的极性键合相主要有氰基(-CN)、氨基(-NH2)和二醇基(DIOL)键合相。极性键合相常用作正相色谱,混合物在极性键合相上的分离主要是基于极性键合基团与溶质分子间的氢键作用,极性强的组分保留值较大。极性键合相有时也可作反相色谱的固定相。
常用的非极性键合相主要有各种烷基(C1~C18)和苯基、苯甲基等,以C18应用最广。非极性键合相的烷基链长对样品容量、溶质的保留值和分离选择性都有影响,一般来说,样品容量随烷基链长增加而增大,且长链烷基可使溶质的保留值增大,并常常可改善分离的选择性;但短链烷基键合相具有较高的覆盖度,分离极性化合物时可得到对称性较好的色谱峰。苯基键合相与短链烷基键合相的性质相似。
另外C18柱稳定性较高,这是由于长的烷基链保护了硅胶基质的缘故,但C18基团空间体积较大,使有效孔径变小,分离大分子化合物时柱效较低。
3.固定相的选择
分离中等极性和极性较强的化合物可选择极性键合相。氰基键合相对双键异构体或含双键数不等的环状化合物的分离有较好的选择性。氨基键合相具有较强的氢键结合能力,对某些多官能团化合物如甾体、强心甙等有较好的分离能力;氨基键合相上的氨基能与糖类分子中的羟基产生选择性相互作用,故被广泛用于糖类的分析,但它不能用于分离羰基化合物,如甾酮、还原糖等,因为它们之间会发生反应生成Schiff 碱。二醇基键合相适用于分离有机酸、甾体和蛋白质。
分离非极性和极性较弱的化合物可选择非极性键合相。利用特殊的反相色谱技术,例如反相离子抑制技术和反相离子对色谱法等,非极性键合相也可用于分离离子型或可离子化的化合物。ODS(octadecyl silane)是应用最为广泛的非极性键合相,它对各种类型的化合物都有很强的适应能力。短链烷基键合相能用于极性化合物的分离,而苯基键合相适用于分离芳香化合物。
另外,美国药典对色谱法规定较严,它规定了柱的长度,填料的种类和粒度,填料分类也较详细,这样使色谱图易于重现;而中国药典仅规定填料种类,未规定柱的长度和粒度,这使检验人员难于重现实验,在某些情况下还浪费时间和试剂。
三、流动相
1.流动相的性质要求
一个理想的液相色谱流动相溶剂应具有低粘度、与检测器兼容性好、易于得到纯品和低毒性等特征。
选好填料(固定相)后,强溶剂使溶质在填料表面的吸附减少,相应的容量因子k降低;而较弱的溶剂使溶质在填料表面吸附增加,相应的容量因子k升高。因此,k值是流动相组成的函数。塔板数N一般与流动相的粘度成反比。所以选择流动相时应考虑以下几个方面:
①流动相应不改变填料的任何性质。低交联度的离子交换树脂和排阻色谱填料有时遇到某些有机相会溶胀或收缩,从而改变色谱柱填床的性质。碱性流动相不能用于硅胶柱系统。酸性流动相不能用于氧化铝、氧化镁等吸附剂的柱系统。
②纯度。色谱柱的寿命与大量流动相通过有关,特别是当溶剂所含杂质在柱上积累时。
③必须与检测器匹配。使用UV检测器时,所用流动相在检测波长下应没有吸收,或吸收很小。当使用示差折光检测器时,应选择折光系数与样品差别较大的溶剂作流动相,以提高灵敏度。
④粘度要低(应<2cp)。高粘度溶剂会影响溶质的扩散、传质,降低柱效,还会使柱压降增加,使分离时间延长。最好选择沸点在100℃以下的流动相。
⑤对样品的溶解度要适宜。如果溶解度欠佳,样品会在柱头沉淀,不但影响了纯化分离,且会使柱子恶化。
⑥样品易于回收。应选用挥发性溶剂。
2.流动相的选择
在化学键合相色谱法中,溶剂的洗脱能力直接与它的极性相关。在正相色谱中,溶剂的强度随极性的增强而增加;在反相色谱中,溶剂的强度随极性的增强而减弱。
正相色谱的流动相通常采用烷烃加适量极性调整剂。
反相色谱的流动相通常以水作基础溶剂,再加入一定量的能与水互溶的极性调整剂,如甲醇、乙腈、四氢呋喃等。极性调整剂的性质及其所占比例对溶质的保留值和分离选择性有显著影响。一般情况下,甲醇-水系统已能满足多数样品的分离要求,且流动相粘度小、价格低,是反相色谱最常用的流动相。但Snyder则推荐采用乙腈-水系统做初始实验,因为与甲醇相比,乙腈的溶剂强度较高且粘度较小,并可满足在紫外185~205nm处检测的要求,因此,综合来看,乙腈-水系统要优于甲醇-水系统。
在分离含极性差别较大的多组分样品时,为了使各组分均有合适的k值并分离良好,也需采用梯度洗脱技术。
反相色谱中,如果要在相同的时间内分离同一组样品,甲醇/水作为冲洗剂时其冲洗强度配比与乙腈/水或四氢呋喃/水的冲洗强度配比有如下关系:
C乙腈=032C 2甲醇+057C甲醇
C四氢呋喃=066C甲醇
C为不同有机溶剂与水混合的体积百分含量。100%甲醇的冲洗强度相当于89%的乙腈/水或66%的四氢呋喃/水的冲洗强度。
3.流动相的pH值
采用反相色谱法分离弱酸(3≤pKa≤7)或弱碱(7≤pKa≤8)样品时,通过调节流动相的pH值,以抑制样品组分的解离,增加组分在固定相上的保留,并改善峰形的技术称为反相离子抑制技术。对于弱酸,流动相的pH值越小,组分的k值越大,当pH值远远小于弱酸的pKa值时,弱酸主要以分子形式存在;对弱碱,情况相反。分析弱酸样品时,通常在流动相中加入少量弱酸,常用50mmol/L磷酸盐缓冲液和1%醋酸溶液;分析弱碱样品时,通常在流动相中加入少量弱碱,常用50mmol/L磷酸盐缓冲液和30mmol/L三乙胺溶液。
注:流动相中加入有机胺可以减弱碱性溶质与残余硅醇基的强相互作用,减轻或消除峰拖尾现象。所以在这种情况下有机胺(如三乙胺)又称为减尾剂或除尾剂。
4.流动相的脱气
HPLC所用流动相必须预先脱气,否则容易在系统内逸出气泡,影响泵的工作。气泡还会影响柱的分离效率,影响检测器的灵敏度、基线稳定性,甚至使无法检测。(噪声增大,基线不稳,突然跳动)。此外,溶解在流动相中的氧还可能与样品、流动相甚至固定相(如烷基胺)反应。溶解气体还会引起溶剂pH的变化,对分离或分析结果带来误差。
溶解氧能与某些溶剂(如甲醇、四氢呋喃)形成有紫外吸收的络合物,此络合物会提高背景吸收(特别是在260nm以下),并导致检测灵敏度的轻微降低,但更重要的是,会在梯度淋洗时造成基线漂移或形成鬼峰(假峰)。在荧光检测中,溶解氧在一定条件下还会引起淬灭现象,特别是对芳香烃、脂肪醛、酮等。在某些情况下,荧光响应可降低达95%。在电化学检测中(特别是还原电化学法),氧的影响更大。
除去流动相中的溶解氧将大大提高UV检测器的性能,也将改善在一些荧光检测应用中的灵敏度。常用的脱气方法有:加热煮沸、抽真空、超声、吹氦等。对混合溶剂,若采用抽气或煮沸法,则需要考虑低沸点溶剂挥发造成的组成变化。超声脱气比较好,10~20分钟的超声处理对许多有机溶剂或有机溶剂/水混合液的脱气是足够了(一般500ml溶液需超声20~30min方可),此法不影响溶剂组成。超声时应注意避免溶剂瓶与超声槽底部或壁接触,以免玻璃瓶破裂,容器内液面不要高出水面太多。
离线(系统外)脱气法不能维持溶剂的脱气状态,在你停止脱气后,气体立即开始回到溶剂中。在1~4小时内,溶剂又将被环境气体所饱和。
在线(系统内)脱气法无此缺点。最常用的在线脱气法为鼓泡,即在色谱 *** 作前和进行时,将惰性气体喷入溶剂中。严格来说,此方法不能将溶剂脱气,它只是用一种低溶解度的惰性气体(通常是氦)将空气替换出来。此外还有在线脱气机。
一般说来有机溶剂中的气体易脱除,而水溶液中的气体较顽固。在溶液中吹氦是相当有效的脱气方法,这种连续脱气法在电化学检测时经常使用。但氦气昂贵,难于普及。
5.流动相的滤过
所有溶剂使用前都必须经045µm(或022µm)滤过,以除去杂质微粒,色谱纯试剂也不例外(除非在标签上标明"已滤过")。
用滤膜过滤时,特别要注意分清有机相(脂溶性)滤膜和水相(水溶性)滤膜。有机相滤膜一般用于过滤有机溶剂,过滤水溶液时流速低或滤不动。水相滤膜只能用于过滤水溶液,严禁用于有机溶剂,否则滤膜会被溶解!溶有滤膜的溶剂不得用于HPLC。对于混合流动相,可在混合前分别滤过,如需混合后滤过,首选有机相滤膜。现在已有混合型滤膜出售。
6.流动相的贮存
流动相一般贮存于玻璃、聚四氟乙烯或不锈钢容器内,不能贮存在塑料容器中。因许多有机溶剂如甲醇、乙酸等可浸出塑料表面的增塑剂,导致溶剂受污染。这种被污染的溶剂如用于HPLC系统,可能造成柱效降低。贮存容器一定要盖严,防止溶剂挥发引起组成变化,也防止氧和二氧化碳溶入流动相。
磷酸盐、乙酸盐缓冲液很易长霉,应尽量新鲜配制使用,不要贮存。如确需贮存,可在冰箱内冷藏,并在3天内使用,用前应重新滤过。容器应定期清洗,特别是盛水、缓冲液和混合溶液的瓶子,以除去底部的杂质沉淀和可能生长的微生物。因甲醇有防腐作用,所以盛甲醇的瓶子无此现象。
7.卤代有机溶剂应特别注意的问题
卤代溶剂可能含有微量的酸性杂质,能与HPLC系统中的不锈钢反应。卤代溶剂与水的混合物比较容易分解,不能存放太久。卤代溶剂(如CCl4、CHCl3等)与各种醚类(如乙醚、二异丙醚、四氢呋喃等)混合后,可能会反应生成一些对不锈钢有较大腐蚀性的产物,这种混合流动相应尽量不采用,或新鲜配制。此外,卤代溶剂(如CH2Cl2)与一些反应性有机溶剂(如乙腈)混合静置时,还会产生结晶。总之,卤代溶剂最好新鲜配制使用。如果是和干燥的饱和烷烃混合,则不会产生类似问题。
8.HPLC用水
HPLC应用中要求超纯水,如检测器基线的校正和反相柱的洗脱。
进行HPLC、GC、电泳和荧光分析,或在涉及组织培养时,没有有机物污染是非常重要的。测高锰酸钾颜色保留时间的定性方法反应慢,对很低水平的有机物(对HPLC可能还是太高了)不够灵敏,特别是不能定量。总有机碳(TOC)分析仪(把有机物氧化成CO2,测游离的CO2)常用于I类(NCCLS)水中低浓度有机物的测定。
I类水标准:
NCCLS ASTM
电阻率,MΩ•cm,25℃,最小 100 180
硅酸盐,mg/L,最大 005 0003
微粒,µm滤器 022 02
微生物,CFU/ml 10 分三档
美国药典24版(2000年)要求TOC<05 mg/L(用标准蔗糖溶液119 mg/L),电导率在室温pH 6时≤24 µS/cm(即≥042 MΩ•cm)。HPLC级水增加吸收特性:在1cm池中,用超纯水作空白,在190nm、200nm和250~400nm的吸收度分别不得过001、001和005。增加不挥发物,≤3ppm(中国药典纯水≤10ppm)。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/zz/13465406.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-12
下一篇 2023-08-12

发表评论

登录后才能评论

评论列表(0条)

保存