一、人工智能技术在 医疗行业 中的应用场景分布医疗行业人工智能应用 代表案例 如下:①HCA Healthcare败血症检测算法 SPOT:HCA Healthcare 开发了 SPOT 算法 用于败血症检测 ,通过机器学习技术,医院计算机摄取数百万患者的数据点进行训练。
该算法每 15 分钟监测所有住院患者的化验结果和生理指标,分析住院患者的体温、脉搏、呼吸频率、白细胞计数、乳酸水平、血液、抗生素使用等信息以监测败血症可能性。
SPOT 以 100 %的敏感度运作 即 包含所有败血症阳性病例,允许护理人员专注于那些需要密集监测和支持的患者。
②雅培虚拟助手: 2018 年初,雅培成为印度第一家为其团队部署 AI 虚拟助手的制药公司。
雅培制药事业部启动了一项试点,让约 3000 名销售员工开始与 Maya 进行日常咨询。
Maya 使用语音或聊天界面以简单的自然语言与员工沟通,并为他们提供所需的帮助及管理任务,回答常见问题解答、完成日常 *** 作、接收报告或训练,帮助员工 *** 作企业知识库(如 SalesForce 或 Tableau )。
③诺华病理学诊断研究平台: 诺华公司的病理学家和数据科学家与科技创业公司PathAI 合作,训练由 PathAI 开发的人工智能系统,以尝试像病理学家一 样诊断,并试图发现病理学家难以发现的隐藏信息。
PathAI 为算法提供由病理学家标记的病理影像用于训练算法以区分细胞类型。
PathAI 将训练载玻片切成约 10000 个较小的图像,并且病理学家在每个切片中标记细胞类型。
经过训练,不同的细胞类型以不同色彩区别,确定为癌症的区域在绿色周围组织的区域中发出亮红色。
④美敦力Guardian Connect 动态血糖监测系统:Guardian Connect 系统使用微型传感器测量皮肤下方的液体中的葡萄糖水平,全天候监测读取并通过小型无线发射器将它们发送到手机。
使用 Guardian Connect 移动应用程序,可以查看最新的血糖数据、血糖历史趋势,跟踪可能影响血糖水平的日常事件,在血糖超出或低于目标范围时还能收到警报。
二、人工智能技术在 养老 行业 的应用场景分布智慧养老落地 典型案例 如下:①“云视”智能摄像头:“云视”智 能摄像头是 北京云住养科技 公司 通过卷积神经网络对数十万张长者图片进行深度学习和训练,研发 的 一款针对长者离床、坠床、跌倒等安全监护的智能摄像头,它能够为高龄空巢老人和住养的安全提供全天候实时的监护。
该技术运用 人脸识别、热成像等技术,当 老人 出现 摔倒等 异常情况 时 设备会主动报警至 监护人, 以便及时 采取紧急救援措施,防止意外发生。
这项技术在保证长者安全的同时也 降低 了养老监护 的人力成本。
②iHealth系列产品: iHealth 系列产品 由天津九安医疗电子股份有限公司研发 ,具体产品包括移动互联智能血压计、移动互联智能血糖仪和试纸、智能血氧心率计、智能运动睡眠腕表、移动互联智能体重秤、体脂称、 iHealth 院外监测与康复设备套装等 养老 终端 设备。
产品采用低功耗 微型化智能传感技术 和轻量 *** 作系统 等, 结合 室内外 GPS 定位技术 对老人血压、血氧、血糖、心率、运动、睡眠进行监测,并通过大数据技术进行分析,如出现数据异常,可以及时向用户和监护人进行提醒。
③“阿铁”看护机器人:“阿铁 是一款集多媒体、移动互联网通信、娱乐互动为一体的多功能老人智能看护机器人, 是 浙江梧斯源通信科技股份有限公司 的产品,专注为居家养老、医养护机构提供养老看护 解决方案。
“阿铁” 的“ 眼睛 里装着 500 万像素 摄像头, 肚皮上嵌着一台 10.1 英寸的屏幕 ,具有智能看护、语音聊天、远程诊疗等功能。
“阿铁”具备 吃药提醒 功能 并可对 护工日常护理工作 进行 监督 。
还能采用语音识别及智能分析系统,能 与老人 自主进行语音对话, 并能通过 语音命令 ,进行唱歌、跳舞等 逗老人开心。
④SeniorAdom远程养老监护系统: SeniorAdom 养老监护系统 是法国 KRG 智慧养老公司 研发的 新一代远程养老监护系统 。
SeniorAdom系统不需要使用者佩戴项链和手环 ,也不需要在家中安装摄像头,只需将系统连接到房间内的传感器,通过系统 内部核心算法,便可 为用户提供全天候不间断 保护。
当独居老人或行动不便者在家中出现跌到、突发疾病等紧急情况时, SeniorAdom 系统可第一时间通知家政人员或是 远程协助者,及时为用户提供救助, 解决独居老人和行动不便者的家居安全问题。
⑤“社村通 居家养老服务平台 :社村通 居家养老服务平台所构建的虚拟养老院, 连接当地政府、 养老机构 和老年人用户,老年人可以通过“社村通” app 下单所需的服务, 在接收到居家老人发送的需求指令后, 养老机构人员上门 为老人提供洗衣、做饭、修理水电、陪同就医、文化娱乐等多项服务 ;平台同时采集老人 当老人需要住院等时,可以第一时间调取个人资料、健康档案等信息;老人 还 可通过app 进行远程问诊咨询 ;平台还能连接多种智能硬件,对老年人进行远程监护。
三、人工智能在 交通运输行业 的应用分布典型落地案例 如下:①马士基航运: 通过 在 冰级集装箱船( Winter Palace ice class container ship )上使用人工智能情景感知技术 ,提高船舶的安全性、效率和可靠性的同时帮助海员消除来自船桥的视线限制,为未来的自动防撞系统提供研究基础。
②美国联合航空公司: 通过 使用霍尼韦尔提供的 IntuVue RDR 4000 三 维 气象雷达 系统 、 SmartRunway 智能跑道系 统 和 SmartLanding智能着 陆 系 统 向 飞行员及时 提供 飞行环境信息,同时增强飞行员在滑行、起飞和着陆过程中的情景感知能力。
③DHL:全面部署物流机器人系统。
Sawyer 协作机器人可以通过高分辨率摄像机、压力传感器和自学习功能帮助 仓库工作人员自动化 *** 作重复性任务 。
LocusBots 机器人可以通过机器学习算法自助规划最佳行驶路径,代替工作人员将货物运送到指定位置,减少了工作人员的走动距离。
PostBOT 机器人内置传感器,可以在城市周围避开障碍物,并能沿着路线安全地跟着快递员完成送货服务。
④达美航空:通过使用空客提供的 智慧天空 开放性数据平台及相关 预测性维护服务 ,达美航空可以 预测飞机部件的故障概率,在部件出现问题前进行维护。
从 2013 年到 2017 年 ,达美航空 全年免于因维护而取消航 班总计从 169 天升至 324 天,成功率高达95% 。
⑤美国邮政署:通过 采用 协调优化技术 COTs 综合利用数据分析、物联网、云端数据库、机器学习等技术或软件平台 优化投递路线,预测潜在问题, 实现部份平日投递路线上的当日寄送, 使包裹递送更加高效、灵活。
四、人工智能在 建筑行业 中的应用分布典型落地案例 如下:Stanislas Chaillou(哈佛建筑师 ):通过 700 份设计图纸的图片训练出了生成对抗网络模型来设计房屋,能够提供完整的布局、间隔、装饰等细节设计。
他的模型可以根据需求提供巴洛克、俄罗斯方块风格、维多利亚、曼哈顿现代都市等建筑风格,还能够根据设计师新输入的房屋参数针对设计进行调整,在考虑安全、建筑面积、房间数量等限制下做出最优的设计。
Chaillou 目前在和纽约曼哈顿下东区的地厂商合作,将这一技术应用在最新的楼房设计项目中 。
Layton:管理着购物中心、酒店、医院和大型体育馆等大型建设项目。
Layton 的建筑原型设计和方案落地过程中都使用Autod esk 的建築信息模型( BIM )来管理三维建筑模型和相关数据,设在这个基础上,他们使用 Autodesk 的人工智能解决方案Construction IQ 来实时读取、分析施工现场的数据。
Construction IQ 可以基于历史数据预测当前项目需要的时间、帮助管理者更好地计划建筑项目,还能预测危险的施工行为、承包方交接可能出现的问题,通过可视化仪表盘的形式展现给工程项目的管理者,帮助他们及时获取可能出现的事故隐患,从而规避事故风险 。
Suffolk:通过分析过去 10 年的项目工期数据,开发算法来对新的项目进行工期预 测。
除此之外, Suffolk 也通过过去 360 个项目中收集的 70 万张图像照片来训练机器学习模型,从而可以基于工地的图像数据预测跌落、撞击等事故风险。
这些举措帮助 Suffolk 的生产效率提升了 20% 。
五、人工智能在 金融行业 中的应用分布典型落地案例 如下:智能信贷:信贷是银行业的典型业务场景。
其中,审批效率有限是传统金融信贷服务中长期存在的痛点。
随着大众金融消费观念的逐步变化,小额高频的信贷服务需求正逐步成为一大趋势。
而随着人工智能技术与金融科技的发展,信贷服务也逐渐向着高效的运作模式转变。
如移大数据征信、基于机器学习技术开发信用风险量化模型、通过拍照、视频、移动终端数据同步等手段核实客户信息等智能技术的应用都在提升信贷服务的效率和效果。
智能反洗钱:随着经济全球化的发展与技术的迭代更新,洗钱犯罪同样“与时俱进”,随着新技术与场景变的更加隐蔽,且成本与风险日益降低。
犯罪网络化、专业化、国际化的趋势愈发明显,而洗钱犯罪的模式也愈发复杂。
在此趋势下,机器学习模型、专家系统等人工智能技术对反洗钱工作带来了新的进展,尤其在“知晓客户(Know Your Customer)”方面能够避免重复劳动,加速审核流程,并加强交易监控的工作效率。
自动化理赔:保险服务的理赔流程效率缓慢是行业中长期存在的痛点,概因理赔所牵扯到的文件审阅和审核步骤繁多,效率低下。
人工智能在保险赔付中的各项场景已存在大量应用。
计算机视觉、语音识别等技术能够在理赔过程中加速身份认证、定损等工作。
而自然语言处理技术能够自动化扫描并读取文件内容,大幅提高理赔,审查等工作中的数据审核效率。
保险定制化:由于传统保险模式存在信息不对称的现象会导致逆向选择与道德风险,在用户需求难以满足的同时制约了保险公司的盈利水平。
基于人工智能技术对数据的多维度利用,保险公司能够结合人的生活习惯、年龄、健康记录,投保经历等信息挖掘投保人的偏好和需求,并设计具有针对性的产品与保险方案,从而提供个性化的服务。
智能投顾:随着人工智能应用和金融科技在此领域中逐渐展露头角,“智能投顾”的概念也在行业中愈发流行。
在此基础上,国内外金融界对于人工智能在财富管理的应用上存在着不同的偏好。
以美国为代表的境外市场目前倾向于利用人工智能技术来识别财富投资的机会。
其典型应用便是通过分析如网站数据、舆情数据、地理定位,甚至卫星定位等另类数据来辅助分析投资方向,发掘哪家股票值得投资。
而国内的发展路径则更倾向于利用人工智能来优化客户的用户画像,从客户对风险的主观承受意愿及客观风险承受能力等信息进行综合、动态的评估,以定制客制化的投资组合。
此外,基于人工智能技术所开发的自动交易功能也为投资管理提供了极大的助力。
由于自动交易对投资策略的执行效率和成本控制工作都能带来显著提高,甚至在一定程度上提高投资组合的收益。
在此趋势下,越来越多的交易员已经被机器所取代。
六、人工智能技术在 电信 行业中的应用分布电信行业全球 5 00 强企业人工智能技术落地 典型案例:• AT&T 基站巡检无人机:无人机搭载的高分辨率相机拍得的内容,通过语义交互、图像识别等技术,使得场外工程师可以实时分析传回 的 视频和照片。
AT&T 通过智能感知与规避技术、自动目标识别、鲁棒控制 、 路径规划等技术,实现 了 无人机自主基站巡检 。
• Comcast 无线网络优化服务平台:使用机器学习、 大数据 等技术拦截网络攻击,知会用户自家无线网络和终端设备的健康状况,从网络数据传播端 对 网络 进行 保护,同时保护连接上 该无线 网络的 所有 设备。
• 中国联通 IP RAN 智能网络预警系统:使用 Prefix Span 时间序列模式挖掘算法,分析大量预警之间的样式关系,以确定网络故障的根因 。
通过数据预处理、关联规则挖掘、关联规则确认与入库和根预警识别,形成了高效的网络预警机制 。
• 中国移动使用 ACOS 覆盖优化 系统:利用人工智能自动输出量化方案,并定量预测优化效果,实现了:通过构建覆盖评估矩阵,定性初判覆盖问题,及优化目标;以及 基于神经网络,构建无线覆盖模型。
利用该模型 实现对弱覆盖、过覆盖优化指标的量化预测。
• 中国电信经营分析 系统 :包含交叉销售模型、决策树算法、数据挖掘平台等模型组件。
该系统能够实现 专题分析、统计报表等功能,提供预先集成的模式和流程来帮助 中国电信 增加收入,并为 中国电信 预测制定未来的销售策略。
• 沃达丰 TOBi 语音机器人:沃达丰通过语义理解、机器学习、语音识别、语音激活等技术,为客户提供全天候即时对话式 智能 客服 。
• 华为 SoftCOM AI 网络: 华为 SoftCOM AI 在全云化网络构架上,引入以机器学习 为核心的人工智能技 术。
构架 由 两个核心 组成,一是 AI 训练平台, 包括数据 训练 和模型及算法 输;另一个是推理平台, 包括数据 收集 以及 根据模型或算法推理网络动作 等 。
该智能自治 网络 通过 自动化业务部署 ,推动网络 向智能化故障自愈,自我优化,自我管理 方向发展,以建设“ 自动,自优,自愈,自治永不故障的自动网络。
七、人工智能 技术在 材料行业 的应用场景人工智能技术在 材料行业 应用代表案例:丰田汽车:丰田研究院,麻省理工学院以及斯坦福大学研究人员使用人工智能技术利用上亿数据信息构建的可预测电压下降与寿命之间关系的算法模块。
该模块可以通过电池材料最早五次放电充电循环,以预测该材料在电池构建上的寿命长短。
该模块可大幅度缩短有关电池材料的研发,设计,生产相关成本。
沙钢集团:沙钢集团联合宝钢工程集团开发了无人化浇钢项目,利用机器人代替人工完成长水口安装拆卸、清洗、烧氧及中间罐测温取样等功能。
作为国内首套炉前快速在线自动测温取样机器人,该机器人系统主要由一台意大利 COMUA 六轴自由度冶金版工业机器人及防护隔热栏 体构成,通过编程、示教,机器人自动装载测温取样探头按照设定好的运动轨迹,自动完成对电炉钢水的检测取样工作。
宝武集团:宝武集团与百度云携手打造智能钢包管理系统。
通过借助百度智能云天工智能物联网平台,宝武智能钢包管理系统可以大幅降低能源消耗,提高生产效率,有效提升安全系数。
通过智能钢包的推广应用,钢铁企业预计可平均降低出钢温度 10 ℃,节约能源成本70 亿元,使钢包烘烤能效下降 50%50%,节约 150 亿元。
新兴际华集团:新兴铸管武安工业区建设了环保智能管控中心, 充分应用大数据分析与挖掘、物联网技术、人工智能手段等现代化信息技术,完善材料生产过程中智能监控大气粉尘监测体系,可实时、精准地对工业源无组织排放进行网格化、高分辨率综合监控。
该中心还通过云平台汇聚实时监测数据,结合大数据分析及模型拟合技术,让 *** 作人员可以准确、快速地获得材料生产中粉尘污染的来源、空间分布及其演变趋势。
苹果:苹果回收机器人 D asiy 可利用计算机视觉技术通过比对识别出超过 1 5 种不同型号的 i Phone 产品,并利用智能机器人控制算法实现针对 iPhone 的拆解工作。
与此同时,在拆解工作完成后, Dasiy 还可在此利用计算机视觉技术实现针对稀土元素、钨、铝合金等元素的回收。
目前,苹果通过单一回收机器人 D asiy 可实现每小时拆解近 2 00 部 iPhone ,每年可拆解近 120 万部 i Phone 。
每拆解 1 0 万部iPhone 。
Dasiy 可帮助苹果回收再利用近 1 900 公斤铝, 7 10 公斤铜, 7 70 公斤钴以及其他金属材料。
以上为「AI 应用前沿」对于人工智能在医疗、金融、交通、电信 等行业典型应用的总结,希望帮助到您。
如果您还有想了解人工智能在自己所在细分行业的应用,欢迎关注并私信交流。
谢邀老僧刚看完李开复的《人工智能》,书里关于AI如何重塑个人、商业与社会的未来图谱讲得蛮透彻,推荐给题主~其实,人工智能主要有四大功能:语音识别、自然语言理解、数据挖掘、计算机视觉。
像天猫精灵、无人驾驶汽车、淘宝给你推荐你感兴趣的商品……所有AI应用场景几乎都是基于这四大功能。
AI具体的应用场景很多,像自动驾驶、医疗、安防、教育、娱乐、家居、金融、电商零售等,老僧就不一一讲了,随便说几个。
1、自动驾驶自动驾驶主要依靠车内的以计算机系统为主的智能驾驶仪,来实现包括道路行驶、地貌识别、导航定位、车道识别、交通控制、停车等多个功能,最终完成无人驾驶的目标。
2、AI医疗AI医疗领域其实挺广的,虚拟助手、医疗影像、医用机器人、智能健康管理、智能影像识别、智能药物研发等都在AI医疗射程范围之内。
例如阿里云AI诊断最新技术,新冠肺炎CT影像识别准确率高达96%,识别速度相比医生肉眼识别提高了近30倍。
3、AI安防AI安防的具体应用包括区域人群监控、客流统计、身份认证的人脸识别、道路监控的车辆识别、案情分析系统等一系列场景,虽然听起来离我们挺遥远,但是一个城市大脑就全覆盖了~4、AI教育AI教育,包括自适应学习、虚拟学习助手、智能评测、个性化辅导、儿童陪伴等。
家里有小朋友应该比较熟悉,主打利用人工智能因材施教的学吧课堂、科大讯飞、云知声等等都是AI教育的具体应用。
不管是何种应用场景,人工智能都将给用户继续带来全新的体验,而这种新体验的背后带来的是效率的提升,以及行业的巨大变革。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)