1988年数学三考研真题答案

1988年数学三考研真题答案,第1张

1988年数学三考研真题答案 谁有1988年到1999年的数学三考研试卷?1997至2000年考研数学三真题及答案1998考研数三真题及解析2010年考研数学二真题及答案

2010考研数学二真题及答案一、选择题1.A0 B1 C2 D3详解:有间断点,所以为第一类间断点,所以为连续点,所以为无穷间断点。

所以选择B。

2.设是一阶线性非齐次微分方程的两个特解,若常数使是该方程的解,是该方程对应的齐次方程的解,则ABCD详解:因是的解,故所以而由已知所以又是非齐次的解;故所以所以。

3.A4e B3e C2e De详解:因与相切,故在上,时,在上,时,所以选择C4.设为正整数,则反常积分的收敛性A仅与取值有关B仅与取值有关C与取值都有关D与取值都无关详解:,其中在是瑕点,由无界函数的反常积分的审敛法知:其敛散性与有关,而在是瑕点,由于,其中是可以任意小的正数,所以由极限审敛法知对任意,都有收敛,与无关。

故选B。

5.设函数由方程确定,其中为可微函数,且则=ABCD详解:,6.(4)=ABCD详解:7.设向量组,下列命题正确的是:A若向量组I线性无关,则B若向量组I线性相关,则r>sC若向量组II线性无关,则D若向量组II线性相关,则r>s详解:由于向量组I能由向量组II线性表示,所以,即若向量组I线性无关,则,所以,即,选(A)。

8.设为4阶对称矩阵,且若的秩为3,则相似于ABCD详解:设为A的特征值,由于详解:设

2014年考研数学一真题及答案解析

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/4394353.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-31
下一篇 2022-10-31

发表评论

登录后才能评论

评论列表(0条)

保存