定积分求极限考研题

定积分求极限考研题,第1张

积分求极限考研题 带有定积分的极限怎么求

球带有定积分的极限,首先当x趋于0时,上限x无限趋于下限0,所以变上限定积分的值无限趋于0,因为当定积分的上限和下限相等时,定积分的值为0。

定积分数学定义:如果函数f(x)在区间[a,b]上连续,用分点xi将区间[a,b]分为n个小区间,在每个小区间[xi-1,xi]上任取一点ri(i=1,2,3„,n),作和式f(r1)+...+f(rn),当n趋于无穷大时,上述和式无限趋近于某个常数A,这个常数叫做y=f(x)在区间上的定积分.记作/abf(x)dx即/abf(x)dx=limn>00[f(r1)+...+f(rn)],这里,a与b叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式。

怎样用定积分表示极限呢

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/4438869.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-11-01
下一篇 2022-11-01

发表评论

登录后才能评论

评论列表(0条)

保存