相互独立事件(independent events): 事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
定义:相互独立是设A,B是两事件,如果满足等式P(A*B) =P(A) *P(B),则称事件A,B相互独立,简称A,B独立。
设A,B是试验E的两个事件,若P(A)u003e0,可以定义P(B∣A)。一般A的发生对B发生的概率是有影响的,所以条件概率P(B∣A)≠P(B),而只有当A的发生对B发生的概率没有影响的时候(即A与B相互独立)才有条件概率P(B∣A)=P(B)。这时,由乘法定理P(A∩B)=P(B∣A)P(A)=P(A)P(B)。
因此
定义:设A,B是两事件,如果满足等式P(A∩B)=P(AB)=P(A)P(B),则称事件A,B相互独立,简称A,B独立。
注:
1、P(A∩B)就是P(AB)
2、若P(A)u003e0,P(B)u003e0则A,B相互独立与A,B互不相容不能同时成立,即独立必相容,互斥必联系。
容易推广:设A,B,C是三个事件,如果满足P(AB)=P(A)P(B),P(BC)=P(B)P(C),P(AC)=P(A)P(C),P(ABC)=P(A)P(B)P(C),则称事件A,B,C相互独立。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)