想学习物联网,需要学习哪些专业方面的课程和知识?

想学习物联网,需要学习哪些专业方面的课程和知识?,第1张

要想成为系统的的物联网工程师需要系统学习。由浅入深地对嵌入式物联网技术以及Linux平台全面掌握,能够独立胜任物联网开发、嵌入式Linux应用开发、5G周边产品开发、底层系统开发、设备驱动开发、从终端到云技术开发以及Linux衍生产品等多方面工作。可以更加系统的了解嵌入式物联网相关行业知识。
具体所学知识包括:
1嵌入式C语言高级编程及行业应用
2各常用数据结构与算法相关知识,以及面向接口的编程
3GUI图形库应用开发技术
4Linux *** 作系统使用
5Linux系统编程
6Linux系统网络编程
7Linux网络路由及数据交换技术
8嵌入式数据库
9嵌入式C++语言编程,以及面向模板库的应用开发
10OpenCV、OpenGL等图像处理
11AI模型训练及场景定位识别应用
12RFID场景应用
13zigbee低功耗网络技术
14Bluebooth组网技术
15MQTT云平台搭建技术
16NB-IOT各大云平台通信技术
17基于5G技术的嵌入式物联网行业应用
18ARM体系结构
19Bootloader启动过程
20常见Bootloader源码及平台移植
21嵌入式Linux内核裁减以及移植
22嵌入式Linux平台搭建技术及技巧
23Android ROM包制作流程
24Android底层驱动开发
25嵌入式从8位到64位硬件底层开发
26嵌入式Linux设备驱动移植以及开发
如果有机会通过十个左右的大项目实践,掌握物联网+嵌入式实际项目案例开发流程,提高研发技能。

物联网传输层分为有线通信传输层和无线通信传输层。
有线通信技术包括中长距离的广域网络和短距离的现场总线;无线通信层分为长距离的无线局域网、中短距离的无线局域网和超短距离的无线局域网。

首先来了解一下物联网的一些内容,物联网顾名思义就是一些物质连接上了网络然后变得智能化,更好 *** 作,更方便的一项技术,这是字面意思的内容。

然后从官方角度来说呢就是通过指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、 连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。

上面这个是比较准确的内容概述,然后这个专业主要是还是和计算机网络相关的,也就是行业属于it行业,首先你得学会编写一些程序语言,然后了解物联网的运动原理,然后才能进行联系道日常生活中的实物上进行物联网的完整使用。当然我们想要学习的物联网工程是一门交叉学科,涉及计算机、通信技术、电子技术、软件开发等多方面知识,该专业的的学生需要学习包括计算机、信息与通信工程、物联网技术和应用等课程。

想要学习和使用物联网还是需要学习很多的技能的,这个是和我们的日常生活关系很大的一个计算机技术应用,物联网的使用技术主要有局域网技术,广域网技术,传输控制协议还有现在比较火的云计算技术,当然物联网的日常使用还是需要许多信息的采集,如声音,语言,面部识别等一些比较常用的技术,物联网的发展肯定会遍布到我们的日常中,但是这个技术的完美使用还需要更好的研究。

物联网的实现步骤主要包括三部分:

1、对物体属性进行标识,属性包括静态属性和动态动态属性需要先由传感器实时探测;需要识别设备完顾对卿体属往的读取。

2、将信息转换为适合网络传输的数据格式:将物体的信息通过网络传输到信息处理中心(处理中心可能是分布式的,如家中的电脑或者手机;也可能是集中式的,如中国移动的IDC )

3、由处理中心完成物体通信的相关计算。

设备步骤:

1、设备部分:机械控制+设备联网。

2、服务器(平台)部分:数据中转,控制中转,数据存储,设备管理等等。

3、手机APP部分:数据浏览,设备控制。

扩展资料:

物联网关键的技术:

1、涉及到各种传感器技术,各种数据有效的采集过来是实现物联网的第一步。

2、主控芯片这方面的技术,这方面的技术主要集中在外国,高端的主控芯片,国内还是空白。

3、然后就是无线网络技术,这一方面,还有比较远的路要走。

4、另外一个就是组网技术,要把各种需要互连的设备进行有效的组网起来,才可以相互沟通。

5、还有就是人工智能,简单的说人工智能就是用机器人来实现人类的一些动作,或者是脑力劳动。

6、还有最后一个比较重要的也就是RFID技术,是一种非接触式的自动识别技术。

参考资料来源:百度百科-物联网

所以物联网的体系结构可分为:

感知层、网络层和应用层三大层次。

1、感知层:

感知层是物联网的底层,但它是实现物联网全面感知的核心能力,主要解决生物世界和物理世界的数据获取和连接问题。

2、网络层:

广泛覆盖的移动通信网络是实现物联网的基础设施,网络层主要解决感知层所获得的长距离传输数据的问题。

它是物联网的中间层,是物联网三大层次中标准化程度最高、产业化能力最强、最成熟的部分。

3、应用层:

物联网应用层是提供丰富的基于物联网的应用,是物联网和用户(包括人、组织和其他系统)的接口。它与行业需求结合,实现物联网的智能应用,也是物联网发展的根本目标。

扩展资料:

感知层:

物联网是各种感知技术的广泛应用。物联网上有大量的多种类型传感器,不同类别的传感器所捕获的信息内容和信息格式不同,所以每个传感器都是唯一的一个信息源。

传感器获得的数据具有实时性,按一定的频率周期性地采集环境信息,不断更新数据。

物联网运用的射频识别器、全球定位系统、红外感应器等这些传感设备,它们的作用就像是人的五官,可以识别和获取各类事物的数据信息。

通过这些传感设备,能让任何没有生命的物体都拟入化,让物体也可以有“感受和知觉”,从而实现对物体的智能化控制。

通常,物联网的感知层包括二氧化碳浓度传感器、温湿度传感器、二维码标签、电子标签、条形码和读写器、摄像头等感知终端。

感知层采集信息的来源,它的主要功能是识别物体、采集信息,其作用相当于人的五个功能器官。

网络层:

它由各种私有网络、互联网、有线通信网、无线通信网、网络管理系统和云计算平台等组成,相当于人的神经中枢和大脑,负责传递和处理感知层获取的信息。

网络层的传递,主要通过因特网和各种网络的结合,对接收到的各种感知信息进行传送,并实现信息的交互共享和有效处理,关键在于为物联网应用特征进行优化和改进,形成协同感知的网络。

网络层的目的是实现两个端系统之间的数据透明传送。其具体功能包括寻址、路由选择,以及连接的建立、保持和终止等。它提供的服务使运输层不需要了解网络中的数据传输和交换技术。

网络层的产生是物联网发展的结果。在联机系统和线路交换的环境中,通信技术实实在在地改变着人们的生活和工作方式。

传感器是物联网的“感觉器官”,通信技术则是物联网传输信息的“神经”,实现信息的可靠传送。

通信技术,特别是无线通信技术的发展,为物联网感知层所产生的数据提供了可靠的传输通道。因此,以太网、移动网、无线网等各种相关通信技术的发展,为物联网数据的信息传输提供了可靠的传送保证。

物联网网络层是三大层次结构中的第二次,物联网要求网络层把感知层接收到的信息高效、安全地进行传送。

应用层:

物联网的行业特性主要体现在其应用领域内。目前绿色农业、工业监控、公共安全、城市管理、远程医疗、智能家居、智能交通和环境监测等各个行业均有物联网应用的尝试,某些行业已经积累了一些成功的案例。

将物联网开发技术与行业信息化需求相结合,实现广泛智能化应用的解决方案,关键在于行业融合、信息资源的开发利用、低成本高质量的解决方案、信息安全的保障以及有效的商业模式的开发。

感知层收集到大量的、多样化的数据,需要进行相应的处理才能作出智能的决策。海量的数据存储与处理,需要更加先进的计算机技术。近些年,随着不同计算技术的发展与融合所形成的云计算技术,被认为是物联网发展最强大的技术支持。

云计算技术为物联网海量数据的存储提供了平台,其中的数据挖掘技术、数据库技术的发展为海量数据的处理分析提供了可能。

物联网应用层的标准体系主要包括应用层架构标准、软件和算法标准、云计算技术标准、行业或公众应用类标准以及相关安全体系标准。

应用层架构是面向对象的服务架构,包括SOA体系架构、业务流程之间的通信协议、面向上层业务应用的流程管理、元数据标准以及SOA安全架构标准。

云计算技术标准重点包括开放云计算接口、云计算互 *** 作、云计算开放式虚拟化架构(资源管理与控制)、云计算安全架构等。

软件和算法技术标准包括数据存储、数据挖掘、海量智能信息处理和呈现等。安全标准重点有安全体系架构、安全协议、用户和应用隐私保护、虚拟化和匿名化、面向服务的自适应安全技术标准等。

物联网是新型信息系统的代名词,它是三方面的组合:

一是“物”,即由传感器、射频识别器以及各种执行机构实现的数字信息空间与实际事物关联;

二是“网”,即利用互联网将这些物和整个数字信息空间进行互联,以方便广泛的应用;

三是应用,即以采集和互联作为基础,深入、广泛、自动化地采集大量信息,以实现更高智慧的应用和服务。

参考资料来源:百度百科-物联网

当前,物联网(IoT)技术领域充释着各种标准,像NB-IoT、LoRa、SigFox等,他们正通过各自擅长的技术和应用抢夺IoT风口,以争取在这片广阔的市场上取得优势。
这里写描述
NB-IoT是由电信标准延伸而出的,主要是由电信运营商支持,而LoRa则是一个商业运用平台,两者主要区别在于商业运营的模式:NB-IoT基本是由电信运营商来把控运营,所以使用者必须使用它的网关及服务,而LoRa就量对开放一些,有各种不同的组合方式,商业的模式是完全不同的。
技术层面上来看,NB-IoT和LoRa的差异其实并不是很大,属于各有优劣。而相对于某些领域,国内有一些用户在并行使用这两种技术和网络。NB-IoT相对而言是受限于基站的,而LoRa则要加入一个网关相对简单容易,并且总的来说价格要比NB-IOT低廉。用户可以根据需求,增加不同的网关覆盖。所以从覆盖程度上来说LoRa的覆盖程度可能比NB-IoT更广一点。
LPWAN又称LPN,全称为LowPower Wide Area Network或者LowPower Network,指的是一种无线网络。这种无线网络的优势在于低功耗与远距离,通常用于电池供电的传感器节点组网。因为低功耗与低速率的特点,这种网络和其他用于商业,个人数据共享的无线网络(如WiFi,蓝牙等)有着明显的区别。
在广泛应用中,LPWAN可使用集中器组建为私有网络,也可利用网关连到公有网络上去。
LPWAN因为跟LoRaWAN名字类似,再加上最近的LoRaWAN在IoT领域引起的热潮,使得不少人对这两个概念有所混淆。事实上LoRaWAN仅仅是LPWAN的一种,还有几种类似的技术在与LoRaWAN进行竞争。
概括来讲,LPWAN具有如下特点:
• 双向通信,有应答
• 星形拓扑(一般情况下不使用中继器,也不使用Mesh组网,以求简洁)
• 低数据速率
• 低成本
• 非常长的电池使用时间
• 通信距离较远
LPWAN适合的应用:
• IoT,M2M
• 工业自动化
• 低功耗应用
• 电池供电的传感器
• 智慧城市,智慧农业,抄表,街灯控制等等
LoraWAN和Lora之间关系
虽然一样是因为名字类似,很多人会将LoRaWAN与LoRa两个概念混淆。事实上LoRaWAN指的是MAC层的组网协议。而LoRa只是一个物理层的协议。虽然现有的LoRaWAN组网基本上都使用LoRa作为物理层,但是LoRaWAN的协议也列出了在某些频段也可以使用GFSK作为物理层。从网络分层的角度来讲,LoRaWAN可以使用任何物理层的协议,LoRa也可以作为其他组网技术的物理层。事实上有几种与LoRaWAN竞争的技术在物理层也采用了LoRa。
LoraWAN的主要竞争技术
这里写描述
如今市场上存在多个同样使用LoRa作为物理层的LPWAN技术,例如深圳艾森智能(AISenz Inc)的aiCast。aiCast支持单播、多播和组播,比LoRaWAN更加复杂完备。许多LoRaWAN下不可能的应用因此可以实现。
Sigfox使用慢速率的BPSK(300bps),也有一些较有前景的应用案例。
NB-IoT(Narrow Band-IoT)是电信业基于现有移动通信技术的IoT网络。其特点是使用现有的蜂窝通信硬件与频段。不管是电信商还是硬件商,对这项技术热情不减。
关键技术Lora简介
LoRaWAN的核心技术是LoRa。而LoRa是一种Semtech的私有调制技术(2012收购CycleoSAS公司得来)。所以为了便于不熟悉数字通信技术的人们理解,先介绍两个常见的调制技术FSK与OOK。选用这两个调制方式是因为:
1这两个是最简单、最基础、最常见的数字通信调制方式
2在Semtech的SX127x芯片上与LoRa同时被支持,尤其是FSK经常被用来与LoRa比较性能。
OOK
OOK全称为On-Off Keying。核心思想是用有载波表示一个二进制值(一般是1,也可能反向表示0),无载波表示另外一个二进制值(正向是0,反向是1)。
在0与1切换时也会插入一个比较短的空的无载波间隔,可以为多径延迟增加一点冗余以便接收端解调。OOK对于低功耗的无线应用很有优势,因为只用传输大约一半的载波,其余时间可以关掉载波以省功耗。缺点是抗噪音性能较差。
这里写描述
FSK
FSK全称为Frequency Shift Keying。LoRaWAN协议也在某些频段写明除LoRa之外也支持(G)FSK。FSK的核心思想是用两种频率的载波分别表示1与0。只要两种频率相差足够大,接收端用简单的滤波器即可完成解调。
对于发送端,简单的做法就是做两个频率发生器,一个频率在Fmark,另一个频率在Fspace。用基带信号的1与0控制输出即可完成FSK调制。但这样的实现中,两个频率源的相位通常不同步,而导致0与1切换时产生不连续,最终对接收器来讲会产生额外的干扰。实际的FSK系统通常只使用一个频率源,在0与1切换时控制频率源发生偏移。
这里写描述
GFSK是基带信号进入调制前加一个高斯(Gaussian)窗口,使得频率的偏移更加平滑。目的是减少边带(Sideband)频率的功率,以降低对相邻频段的干扰。代价是增加了码间干扰。
对于这一方面的研究实验发现:学习Lora调制技术的一些准备及发现
然而,对于“悠久历史积累”和高安全、易部署等综合优势的LoRa阵营来说,最近几年里,在技术和落地方面虽取得了长足的进步,但离真正的规模、解决行业客户的切实问题是有着不小的差距。那么,究竟是技术壁垒突破较难?产业链生态不健全?亦或者是商业模式限制了从业者对市场规模的想象?对于LoRa产业链的广大从业者而言,找到制约LoRa技术大规模发展的瓶颈,并联手产业合力突围对推动产业良性发展至关重要。

6月26日,OPPO在MWC上召开发布会,展示了全球首款屏下摄像头手机,引起了关注,随后他们又在发布会上官宣了全新的“无网络通信技术”。我一脸懵逼——除了吼,这个世界上居然还有不依靠网络的通信技术吗?

(图自:OPPO官方)

据OPPO称,他们的无网络通讯技术能够在3000米内不依赖蜂窝网络、Wi-Fi、蓝牙等传统通信方式的条件下,实现OPPO设备间点对点的文字、语音传输和语音通话。同时还支持多设备组成小范围局域网,并通过手机中继拓展通信范围,只要处于信号搜索范围,即可实现局域网通信。

哦,原来是自组网技术。

这令我不由得想起了此前 华为 手机的无网络互传技术HuaWei Share。如果说华为的技术是近距离高速同步数据的创新,那么OPPO这个无网络通信技术则瞄准应急通信、高干扰高负载极端通信条件下的数据交换,在一些信号比较差或者LTE负载过大的地区,比如大型体育赛事、演唱会、展会等场景比较好用。

在现场演示时,一台经过改装的OPPO R15手机在切断所有信号的情况下,还可以像对讲机那样通话和传输信息。这一切都是通过设备自发组建网络完成,不依赖LTE、Wi-Fi、蓝牙或Zigbee等已知通信方式。

(图自:新浪科技)

据悉,该技术采用了OPPO定制的芯片与通讯协议,可以实现低电量下可以维持72个小时的文字通讯续航,以及支持持续信道监听,在被其他设备发现后可以发送关机前记录的最后GPS位置,让用户在野外手机关机、失联等极端环境下,依然能够被搜寻。

(图自:新浪科技)

无线自组网技术其实由来已久,最早的应用区分主要是 物联网 和非物联网领域。

据环球专网通信报道,在物联网领域,主流的Zigbee、蓝牙等技术都集成了无线自组网功能,用于近场、海量终端之间的小数据量传输。在这个领域,无线自组网具有统一的标准,产业链成熟。

而在非物联网领域,无线自组网技术最早起源于军事应用,即美军的先进战术通信系统,称为Ad Hoc,目前已经成为军用电台的必备功能。2000年左右,Ad hoc技术开始转为民用,称为Mesh技术。2003年,IEEE标准组织开始制定Mesh标准,2006年提出了80211S,即Wi-Fi体制的Mesh标准。

在Wi-Fi Mesh之后,基于COFDM技术体制的Mesh产品逐渐成为主流。COFDM自组网产品的工作频段、发射功率和无线传输技术都可以根据需求定制,摆脱了Wi-Fi Mesh对公共频段和商用套片的依赖,室外移动环境下的覆盖能力得到了显著提升,应用场景也得到了较大的扩展,比较成功的应用如公安原有的无线图传系统等。

但是,COFDM技术与主流3GPP技术体制有较大的差别,各厂家的标准也不统一,相应的产业链比较薄弱,应用比较零散,无法形成规模化的市场,未来的发展空间非常有限。

环球专网通信认为,尽管自组网技术一直都是业界研究的热点,但是该技术直到4G规模商用也没有进入主流3GPP标准规范之中,主要原因还是运营商市场对自组网应用的需求并不是太多。

相比运营商网络,无线专网要求更广的覆盖范围、更灵活的组网方式和更强的上传容量,需要支持脱网直通、多跳桥接以及无中心节点自组网等功能,而宽带自组网技术是满足上述需求的关键,因此3GPP标准在R12及后续版本中都对自组网技术进行了重点研究,并形成了相关的标准。

3GPP标准在R12版本中增加了邻近服务功能(Proximity Service, ProSe),定义了相应的空口,即PC5接口,以及空口技术规范,即Sidelink规范。在LTE帧结构的基础上,Sidelink规范增加了discovery信道,用于终端之间的相互发现,通过同步信号实现终端之间的同步,而对于控制信道和业务信道则延用了LTE标准。Sidelink空口规范支持蜂窝小区内和小区外的终端之间直接通信,终端之间可以自组成网,因此,Sidelink实际上就是3GPP体制下的宽带自组网技术的空口规范,是未来各种3GPP体制自组网产品的技术基础。

相比COFDM封闭技术体制的自组网技术,3GPP体制的自组网技术能够充分利用4G以及5G的开放的先进技术,相关的产品也能够充分利用3GPP成熟的产业资源,从而大幅提升产品的性能指标,扩展应用场景,增强实战效果。其中,一些关键的技术和功能包括:

1、信道编解码

业务信道采用Turbo码,其编码增益比COFDM自组网常用的卷积码具有显著的提升;

2、高阶调制

最高可以支持256QAM,进一步提升频谱效率。利用成熟的AMC机制,可以根据信道条件动态调整调制阶数,保持空口流量的平稳;

3、多天线技术

在R14版本中,Sidelink规范增加了发射分集功能,,为后续进一步引入空分复用奠定了基础。利用LTE成熟的MIMO技术,3GPP自组网技术能够显著提升频谱效率,在两天线配置下,频谱效率能够达到6 8bps/Hz,比COFDM自组网的频谱效率提升了4 5倍,这对于频谱资源有限的专网用户非常重要;

4、HARQ技术

融合重传和前向纠错功能,显著提升空口传输性能,特别是空口的稳健性,有助于传输时延的减小;软合并功能能够进一步提升纠错能力;

5、QoS机制

非3GPP体制的自组网产品大都没有完整的端到端QoS机制,只是一个IP管道而已。但是在ProSe功能中,定义了数据包优先级(ProSe Per-Packet Priority:PPPP),针对语音、视频、数据等不同的业务进行分级保障,也可以针对不同的用户组进行分级保障。QoS分级保障是无线专网的必要需求;

6、新波形

利用F-OFDM、UFMC等5G中讨论的新波形技术,3GPP自组网技术能够更加灵活、高效地利用专网有限的频谱资源;

上述这些功能对于传统自组网大多还是新技术,而这些功能在规模部署的4G网络中已经证明能够显著提升无线性能,因此也将显著提升无线自组网的无线性能。当然,随着更多应用场景的引入,Sidelink规范自身也在不断完善。在R12的基础上,Sidelink规范在R13中增加了跨载波终端发现、数据包优先级、UE-to-Network中继等功能,在R14中增强了中继的功能,能够支持更多的跳数,结合桥接功能,单个蜂窝小区的覆盖范围有了更为明显的提升。Sidelink规范在R14中也被运用到V2X标准中,用于车与车、车与路边单元之间的直接通信,基于车联网的应用要求,在当前的R15版本讨论中,载波聚合、64QAM、发射分集、更短子帧等关键技术和功能极有可能增加到规范之中,而在R16版本的早期讨论中,包括 V2X切片、E2E QoS、多播、定位等新功能也列上了讨论的议题。

目前普通的对讲机手台对手台的通讯距离一般在3-5千米左右,换言之,OPPO的无网络通讯技术已经超出了Wi-Fi与蓝牙的覆盖范围,达到了普通对讲机的要求。推测OPPO应该使用了无线电技术来实现超远距离通讯。

其实在荷兰科技媒体LetsGoDigital本月早些时候的报道中,OPPO已经在欧洲市场获批了“Reno F”和“Reno Z”两款型号,Reno Z新机所采用的全新MeshTalk技术估计就是上面提到的“无网络通信技术”。

目前OPPO已经向EUIPO提交了Mesh Talk和Mesh Talkie两个商标

如果OPPO的无网络通讯技术切实可行的话,那么以后OPPO手机就可以胜任自驾游、短长途出行的车队通讯需求,自带一部分“越野”属性,只不过大家都要使用同一品牌的手机咯。

引用:
>

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12688061.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存