随着5G的商业化逐步落地,越来越多的领域加入了数字化转型之路,利用物联网技术实施智能化升级。特别是题主所列举的工业领域,就是谋求数字化转型的先锋。
特别是2020年新冠疫情爆发以来,由于供应链断裂和防疫管理不善所导致企业停工甚至是破产的例子不在少数。而对那些熬过艰难时刻的企业而言,想要在疫情常态化的背景下重塑核心竞争力,数字化转型成为了不可或缺的手段。
与传统的经营模式相比,实施数字化转型能够给企业带来巨大的价值,包括提高生产效率、减少人力成本、加速产品迭代、优化管理流程、加强制造自动化程度等等,真正起到降本增效的作用。此外,数字化程度的提高,也大大提高了企业在生产经营中各种风险的监测能力,避免造成相关损失。
当然,以上只是物联网对于某一个领域所创造的价值,同理,在面对智慧农业、智慧交通、智能家居等行业时,一样可以利用物联网技术来实现更智能和更便捷的功能,例如气候传感器和温湿度传感器可自行检测分析当前数据是否符合农作物生长需求,并联动灌溉或保温系统进行干预,确保作物最佳生长环境。(了解更多智慧人脸识别解决方案,欢迎咨询汉玛智慧)
不知道大家有没有细心发现,其实现在很多物联网的应用已经深入到我们生活各个部分。比如说共享单车,自助扫码骑行,骑完以后锁车付费走人,这个能很好地解决大家短途出行效率。还有就是应用在汽车上,专业术语叫车联网,现在很多10几万的车都具备远程监控的功能。比如说通过app远程启动车子,通过app查看车子的状态,当前在什么位置,还能根据你的行驶里程和机油寿命提醒你去保养等等。类似的例子还有很多,比如说智能家居产品,小家电产品。有些应用虽然感觉是鸡肋,这些都是他们跑马圈地的结果,先把市场占下来,再慢慢更新迭代产品。但不可否认的事,大家确实能感觉到物联网潜在的巨大价值,生怕自己错过一个亿。
从种种迹象也反映了物联网一定是个发展的趋势。总的来说,其实物联网可以和任何一个行业进行融合,让传统的产品更加智能高效。而我们汉玛智慧也在一直努力研发,争取为大家提供更多更优质的智慧解决方案,让我们的生活更加的便捷,让科技未来更指日可待!
2017-11-30请点蓝字>慎思行慎思行
文章来源中国人工智能学会,罗兰贝格公司
个人微信 helloSSX
人工智能概念介绍
人工智能是什么?人工智能是一门利用计算机模拟人类智能行为科学的统称,它涵盖了训练计算机使其能够完成自主学习、判断、决策等人类行为的范畴。人工智能、机器学习、深度学习是我们经常听到的三个热词。关于三者的关系,简单来说:机器学习是实现人工智能的一种方法,深度学习是实现机器学习的一种技术。机器学习使计算机能够自动解析数据、从中学习,然后对真实世界中的事件做出决策和预测;深度学习是利用一系列“深层次”的神经网络模型来解决更复杂问题的技术。
人工智能从其应用范围上又可分为专用人工智能(ANI)与通用人工智能(AGI)。专用人工智能,即在某一个特定领域应用的人工智能,比如会下围棋并且也仅仅会下围棋的AlphaGo;通用人工智能是指具备知识技能迁移能力,可以快速学习,充分利用已掌握的技能来解决新问题、达到甚至超过人类智慧的人工智能。
通用人工智能是众多科幻作品中颠覆人类社会的人工智能形象,但在理论领域,通用人工智能算法还没有真正的突破,在可见的未来,通用人工智能既非人工智能讨论的主流,也还看不到其成为现实的技术路径。专用人工智能才是真正在这次人工智能浪潮中起到影响的主角。我们的讨论范围将聚焦在更具有现实应用意义的专用人工智能技术,具体讨论现有专用人工智能技术能带来的商业价值。
人工智能发展历史与现状
人工智能的发展历史
人工智能的概念形成于20世纪50年代,其发展阶段经历了三次大的浪潮。第一次是50-60年代注重逻辑推理的机器翻译时代;第二次是70-80年代依托知识积累构建模型的专家系统时代;这一次是2006年起开始的重视数据、自主学习的认知智能时代。在数据、算法和计算力条件成熟的条件下,本次浪潮中的人工智能开始真正解决问题,切实创造经济效果。
本次人工智能浪潮的驱动因素
近年来,人工智能应用领域市场规模、人工智能领域的资金投入都迅速增长,反映了社会与市场整体对其认知程度与信心的高涨。驱动认知程度提高的一方面因素是技术本身的提高,包括数据、算法、算力,使得人工智能技术真正为商业应用创造了价值;另一方面,大数据、物联网、云计算等技术为人工智能的发展打下了良好基础。
高质量、大规模的大数据成为可能。1986—2007年,全球单日信息交换量增长了约220倍,全球信息储存能力增加了约120倍。海量数据为人工智能技术的发展提供了充足的原材料。
计算力提升突破瓶颈:以GPU为代表的新一代计算芯片提供了更强大的计算力,使得运算更快,同时在集群上实现的分布式计算帮助人工智能模型可以在更大的数据集上运行。
机器学习算法取得重大突破:以多层神经网络模型为基础的算法,使得机器学习算法在图像识别等领域的准确性取得了飞跃性的提高。
社会理解与接受程度广泛提升:随着社会信息化及互联网/移动互联网的普及,以及受AlphaGo等大量热点舆论事件影响,全社会对人工智能的态度已逐渐从怀疑、恐惧转变为好奇、接受和认同。
物联网、大数据、云计算技术提供了人工智能的发展基础
物联网、大数据、云计算技术为人工智能技术的发展提供了其所需要的关键要素。物联网为人工智能的感知层提供了基础设施环境,同时带来了多维度、及时全面的海量训练数据。大数据技术为输入数据在储存、清洗、整合方面做出了贡献,帮助提升了深度学习算法的性能。云计算的大规模并行和分布式计算能力带来了低成本、高效率的计算力,并降低了计算成本。
人工智能产业发展状况
技术方向方面
人工智能方向的企业目前主要分为两类:专注于技术研发的通用型人工智能企业,如DeepMind、 Facebook AI Research、Google Brain与Baidu AI等,以及专注于人工智能技术应用的专用型人工智能企业。通用型人工智能由于研发技术难度大,目前多由巨头互联网公司在进行布局,短期内没有明确的技术突破前景。专用型人工智能企业数量众多,但其发展仍然受制于需要人工标注的数据限制。
应用方向方面
从应用方向上来看,金融、医疗、汽车、零售等数据基础较好的行业方向应用场景目前相对成熟,相关方向企业的融资热度也较高。以自动驾驶领域为例,谷歌、百度、特斯拉、奥迪等科技和传统巨头纷纷加入;人工智能在金融领域的智能风控、智能投顾、市场预测、信用评级等领域都有了成功的应用;在医疗领域,人工智能算法被应用到新药研制,提供辅助诊疗、癌症检测等方面都有突破性进展,凡此种种,不一而足。
地域发展方面
纵观全球人工智能产业的发展,我们可以发现:全球领先的创新高点散落在各个国家,如美国纽约与硅谷、英国伦敦、以色列,以及中国的北京、上海与深圳。人工智能技术本身具有高流通、易传导的性质,在全球信息流通开放的大环境下,人工智能的发展不再受限于国家或地域。
借助于良好的人才基础、巨大的应用市场、强有力的风投基金支持,中国人工智能企业的发展势头良好,在全球处在优势领先地位。中国的人工智能企业数量、专利申请数量以及融资规模均仅次于美国,位列全球第二。在国内,计算机视觉、服务机器人、自然语言处理方向的人工智能企业占据了人工智能企业个数的一半以上。北京、上海、深圳作为国内人工智能创新的高地,其相关企业数量占据了国内企业总数的近80%。
人工智能未来发展的预测
我们认为,短期内构建大型的数据集将会是各企业与研究机构发展的重要方向。同时,机器学习技术会更注重迁移学习与小样本学习等方向,近期AlphaGo Zero在无监督模式下取得的惊人进步充分体现了此方向的热度。长期来看,通用型人工智能的发展将依赖于对人脑认知机制的科学研究,其发展前景目前尚处于无法预测的状态。
在商业应用方面,短期内,专用型人工智能将会在数据丰富的行业、应用场景成熟的业务前端(如营销、服务等)取得广泛的应用。长期来看,正如国际人工智能领域著名学者Michael IJordan所说,人工智能技术将能在边际成本不递增的情况下将个性化服务普及到更多的消费者与企业,从细分行业的特定应用场景应用到更加普世化的情景。
编辑 YibinP
推荐阅读
从服务器的硬件架构来看,AI服务器是采用异构形式的服务器,在异构方式上可以根据应用的范围采用不同的组合方式,如CPU+GPU、CPU+TPU、CPU+其他的加速卡等。与普通的服务器相比较,在内存、存储、网络方面没有什么差别,主要在是大数据及云计算、人工智能等方面需要更大的内外存,满足各种数据的收集与整理。我们都知道普通的服务器是以CPU为算力的提供者,采用的是串行架构,在逻辑计算、浮点型计算等方面很擅长。因为在进行逻辑判断时需要大量的分支跳转处理,使得CPU的结构复杂,而算力的提升主要依靠堆砌更多的核心数来实现。
但是在大数据、云计算、人工智能及物联网等网络技术的应用,充斥在互联网中的数据呈现几何倍数的增长,这对以CPU为主要算力来源的传统服务提出了严重的考验,并且在目前CPU的制程工艺、单个CPU的核心数已经接近极限,但数据的增加却还在持续,因此必须提升服务器的数据处理能力。因此在这种大环境下,AI服务器应运而生。
现在市面上的AI服务器普遍采用CPU+GPU的形式,因为GPU与CPU不同,采用的是并行计算的模式,擅长梳理密集型的数据运算,如图形渲染、机器学习等。在GPU上,NVIDIA具有明显优势,GPU的单卡核心数能达到近千个,如配置16颗NVIDIA Tesla V100 Tensor Core 32GB GPUs的核心数可过10240个,计算性能高达每秒2千万亿次。且经过市场这些年的发展,也都已经证实CPU+GPU的异构服务器在当前环境下确实能有很大的发展空间。
但是不可否认每一个产业从起步到成熟都需要经历很多的风雨,并且在这发展过程中,竞争是一直存在的,并且能推动产业的持续发展。AI服务器可以说是趋势,也可以说是异军崛起,但是AI服务器也还有一条较长的路要走,以上就是浪潮服务器分销平台十次方的解答。5G对于云计算的发展有什么影响呢?5G本质上讲的是端到基站通信的问题,但实际上应用的链很长,5G只是其中的一段。当5G这个技术出来后,高可靠、低时延、大规模机器连接,移动带宽会变化非常大。
第一,高可靠。超低时延的确会带来很大的影响,应用层面短时间看比较少,后端的影响会逐渐显现出来。如果5G无线的时延降低后,带来的挑战是后面的环节要想办法降低,同时这也是一个比例的问题。
第二,边缘计算。边缘计算的好处在于延时,很多的处理从端到边缘就结束,而不用到云上面,包括安全控制,有的边缘计算可以控制的场景下可能安全性好一些。还有一些服务,因为后面很长链路出问题很大,如果端到边缘距离比较短,出问题的概率比较低,当后台断了还是可行的,这是重要的边缘计算方面。
从时延角度来讲,目前互联网用的比较多的是CDN,在5G下CDN的重要性会大大提升,因为大家追求低时延的要求,当5G的时延低了,带宽大了对内容响应有很大的提升,CDN有很多结合的地方。
第三,异构资源。对用户体验,从前端传输到后台设备的传输,这是一个大的周期。如果对花在传输上的时间变短,客户要求计算是否可以更快,这是自然的选择。如果计算慢存储时间短那用户体验就不好。
现在有了异构计算,比如与人工智能相关的GPU的方式,现在计算不仅仅是由GPU还有各种各样的加速,可能有FPGA还有AM不同的计算,这是大的趋势,按照统一的方式,所有的计算都是X86的。
第四,存储。5G从低时延的角度来讲,要更快更好,。很多存储计算体系结构来说,很多体系都在存储结构当中,这个趋势也是可以匹配起来的,在存储领域力度要高,而且速度要快。业界在研究内存和外存和的方式,内存掉链了也不会掉技术,整个体系架构,冯诺伊曼的体系架构在某些点在改造,使得在传统的性能改变,甚至在存储加处理器来提升处理速度,缩短处理周期的时延。
第五,网络的整体改造。5G本质上解决的只是终端的最后一公里,当然可能连最后一公里都到不了,如果频率高了距离会近一些,这只是传输链当中最小的一段。从云平台构建角度来讲,我们需要把整个网络统一考虑规划,不仅仅是最后一公里那一段,比如DC的网络要更加低时延,还有网络整体架构,一方面可以充分地利用5G端时延下降的情况,而且使得时延更加降低,也就是端到端的网络时延降低,不能依靠5G那一端。
第六,大规模连接方面,包括大规模的机器通讯,对整体云上的影响也是比较大,我们知道5G有一个很大的特点,每平方公里的连接速度可以超过200万个,传统的通讯不需要这么大的通讯量,因为没有这么多的人,在互联网的发展往万物互联的方向走,需要更多的物件、器械、小设备都会连上来,对5G带来一个大的推动作用,从云端来讲需要结合起来看怎么做。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)