物联网的应用领域有哪些?

物联网的应用领域有哪些?,第1张

物联网的应用如下:
1、智能仓库。物联网一个很好的应用。它能准确的提供仓库管理各个环节数据的真实性,对于生产企业,可以根据这个数据合理的把控库存量,调整生产量。物联网中利用SNHGES系统的库位管理功能,可以准确提供货物库存位置,这就大大提高了仓库管理的效率。
2、智能物流。运用条形码、传感器、射频识别技术、全球定位等先进的物联网通信技术,实现物流业运输、仓储、配送、装卸等各个环节的智能化。不仅货物运输更加的自动化,而且作出的全面分析还能及时的处理问题对物流过程作出调整,优化了管理。大大提高了物流行业的服务水平,还节约了成本。
3、智能医疗。利用物联网技术,实现患者和医务人员、医疗机构、医疗设备的互动,实现医疗智能化。物联网医疗设备中的传感器与移动设备可以对患者的生理状态进行捕捉,把生命指数记录到电子健康文件中,不仅自己可以查看,也方便了医生的查阅,实现远程的医疗看病。很好的解决当前的医疗资源分布不均,看病难的问题。
4、智能家庭。物联网的出现让我们的日常生活更加的便捷。不远的将来一台手机,就可以 *** 作家里大多数的电器,查看它们的运行状态。寒冷的冬天,我们可以提前打开家里的空调,回到家就暖暖的。物联网还能准确的定位家庭成员的位置,你再也不用担心孩子跑的找不见人,省心省力。
5、智能农业。物联网在农业中的应用就更加的广泛。监测温湿度,监视土壤酸碱度,查看家禽的状态。在这些数据的支持下,农户就可以合理进行科学评估,安排施肥,灌溉。监测到的天气情况比如降水,风力等又为我们抗灾、减灾提供了依据。提高了产量,降低了减产风险。
6、智能交通。物联网将整个交通设备连在一起。主要是用图像识别为核心技术。可以准确的收集到交通车流量信息,通过信号灯等设备进行流量的控制,这个技术的运用,会让堵车成为历史。管理人员利用这个技术能将道路、车辆的情况掌握的一清二楚,驾驶违章无处可逃,交通事故也能及时的得到处理。人们的出行得到了很大的方便。
7、智能电力。电力工程是一项重大的民生工程,对电网的安全检测是一项必修科目。以南方电网与中国移动通过M2M技术进行的合作为例,因为物联网的运用,使得自动化计量系统开始启动,使得故障评价处理时间得到一倍的缩减。

问题
UOS公有云开放以来,一些用户反应用dd命令测试出来的1TB云硬盘的吞吐率(MBPS)只有128MB/s,而不是我们SLA保证的170MB /s ,这是为什么?下面我会简单介绍如何测试硬盘,RAID,SAN,SSD,云硬盘等,然后再来回答上面的问题。
测试前提
我们在进行测试时,都会分清楚:
测试对象:要区分硬盘、SSD、RAID、SAN、云硬盘等,因为它们有不同的特点
测试指标:IOPS和MBPS(吞吐率),下面会具体阐述
测试工具:Linux下常用Fio、dd工具, Windows下常用IOMeter,
测试参数: IO大小,寻址空间,队列深度,读写模式,随机/顺序模式
测试方法:也就是测试步骤。
测试是为了对比,所以需要定性和定量。在宣布自己的测试结果时,需要说明这次测试的工具、参数、方法,以便于比较。
存储系统模型
为了更好的测试,我们需要先了解存储系统,块存储系统本质是一个排队模型,我们可以拿银行作为比喻。还记得你去银行办事时的流程吗?
去前台取单号
等待排在你之前的人办完业务
轮到你去某个柜台
柜台职员帮你办完手续1
柜台职员帮你办完手续2
柜台职员帮你办完手续3
办完业务,从柜台离开
如何评估银行的效率呢:
服务时间 = 手续1 + 手续2 + 手续3
响应时间 = 服务时间 + 等待时间
性能 = 单位时间内处理业务数量
那银行如何提高效率呢:
增加柜台数
降低服务时间
因此,排队系统或存储系统的优化方法是
增加并行度
降低服务时间
硬盘测试
硬盘原理
我们应该如何测试SATA/SAS硬盘呢?首先需要了解磁盘的构造,并了解磁盘的工作方式:
每个硬盘都有一个磁头(相当于银行的柜台),硬盘的工作方式是:
收到IO请求,得到地址和数据大小
移动磁头(寻址)
找到相应的磁道(寻址)
读取数据
传输数据
则磁盘的随机IO服务时间:
服务时间 = 寻道时间 + 旋转时间 + 传输时间
对于10000转速的SATA硬盘来说,一般寻道时间是7 ms,旋转时间是3 ms, 64KB的传输时间是 08 ms, 则SATA硬盘每秒可以进行随机IO *** 作是 1000/(7 + 3 + 08) = 93,所以我们估算SATA硬盘64KB随机写的IOPS是93。一般的硬盘厂商都会标明顺序读写的MBPS。
我们在列出IOPS时,需要说明IO大小,寻址空间,读写模式,顺序/随机,队列深度。我们一般常用的IO大小是4KB,这是因为文件系统常用的块大小是4KB。
使用dd测试硬盘
虽然硬盘的性能是可以估算出来的,但是怎么才能让应用获得这些性能呢?对于测试工具来说,就是如何得到IOPS和MBPS峰值。我们先用dd测试一下SATA硬盘的MBPS(吞吐量)。
#dd if=/dev/zero of=/dev/sdd bs=4k count=300000 oflag=direct
记录了300000+0 的读入 记录了300000+0 的写出 1228800000字节(12 GB)已复制,17958 秒,684 MB/秒
#iostat -x sdd 5 10

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sdd 000 000 000 1679480 000 13435840 800 079 005 005 7882

为什么这块硬盘的MBPS只有68MB/s 这是因为磁盘利用率是78%,没有到达95%以上,还有部分时间是空闲的。当dd在前一个IO响应之后,在准备发起下一个IO时,SATA硬盘是空闲的。那么如何才能提高利用率,让磁盘不空闲呢?只有一个办法,那就是增加硬盘的队列深度。相对于CPU来说,硬盘属于慢速设备,所有 *** 作系统会有给每个硬盘分配一个专门的队列用于缓冲IO请求。
队列深度
什么是磁盘的队列深度?
在某个时刻,有N个inflight的IO请求,包括在队列中的IO请求、磁盘正在处理的IO请求。N就是队列深度。
加大硬盘队列深度就是让硬盘不断工作,减少硬盘的空闲时间。
加大队列深度 -> 提高利用率 -> 获得IOPS和MBPS峰值 -> 注意响应时间在可接受的范围内
增加队列深度的办法有很多
使用异步IO,同时发起多个IO请求,相当于队列中有多个IO请求
多线程发起同步IO请求,相当于队列中有多个IO请求
增大应用IO大小,到达底层之后,会变成多个IO请求,相当于队列中有多个IO请求 队列深度增加了。
队列深度增加了,IO在队列的等待时间也会增加,导致IO响应时间变大,这需要权衡。让我们通过增加IO大小来增加dd的队列深度,看有没有效果:
dd if=/dev/zero of=/dev/sdd bs=2M count=1000 oflag=direct
记录了1000+0 的读入 记录了1000+0 的写出 2097152000字节(21 GB)已复制,106663 秒,197 MB/秒
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sdd 000 000 000 38060 000 38973440 102400 239 628 256 9742
可以看到2MB的IO到达底层之后,会变成多个512KB的IO,平均队列长度为239,这个硬盘的利用率是97%,MBPS达到了197MB/s。(为什么会变成512KB的IO,你可以去使用Google去查一下内核参数 max_sectors_kb的意义和使用方法 )
也就是说增加队列深度,是可以测试出硬盘的峰值的。
使用fio测试硬盘
现在,我们来测试下SATA硬盘的4KB随机写的IOPS。因为我的环境是Linux,所以我使用FIO来测试。
$fio -ioengine=libaio -bs=4k -direct=1 -thread -rw=randwrite -size=1000G -filename=/dev/vdb \
-name="EBS 4K randwrite test" -iodepth=64 -runtime=60
简单介绍fio的参数
ioengine: 负载引擎,我们一般使用libaio,发起异步IO请求。
bs: IO大小
direct: 直写,绕过 *** 作系统Cache。因为我们测试的是硬盘,而不是 *** 作系统的Cache,所以设置为1。
rw: 读写模式,有顺序写write、顺序读read、随机写randwrite、随机读randread等。
size: 寻址空间,IO会落在 [0, size)这个区间的硬盘空间上。这是一个可以影响IOPS的参数。一般设置为硬盘的大小。
filename: 测试对象
iodepth: 队列深度,只有使用libaio时才有意义。这是一个可以影响IOPS的参数。
runtime: 测试时长
下面我们做两次测试,分别 iodepth = 1和iodepth = 4的情况。下面是iodepth = 1的测试结果。
上图中蓝色方框里面的是测出的IOPS 230, 绿色方框里面是每个IO请求的平均响应时间,大约是43ms。方框表示95%的IO请求的响应时间是小于等于 9920 ms。橙色方框表示该硬盘的利用率已经达到了9858%。
下面是 iodepth = 4 的测试:
我们发现这次测试的IOPS没有提高,反而IO平均响应时间变大了,是17ms。
为什么这里提高队列深度没有作用呢,原因当队列深度为1时,硬盘的利用率已经达到了98%,说明硬盘已经没有多少空闲时间可以压榨了。而且响应时间为 4ms。 对于SATA硬盘,当增加队列深度时,并不会增加IOPS,只会增加响应时间。这是因为硬盘只有一个磁头,并行度是1, 所以当IO请求队列变长时,每个IO请求的等待时间都会变长,导致响应时间也变长。
这是以前用IOMeter测试一块SATA硬盘的4K随机写性能,可以看到IOPS不会随着队列深度的增加而增加,反而是平均响应时间在倍增。
队列深度 IOPS 平均响应时间
1 332931525 3002217
2 333985074 5986528
4 332594653 12025060
8 336568012 23766359
16 329785606 48513477
32 332054590 96353934
64 331041063 193200815
128 331309109 385163111
256 327442963 774401781
寻址空间对IOPS的影响
我们继续测试SATA硬盘,前面我们提到寻址空间参数也会对IOPS产生影响,下面我们就测试当size=1GB时的情况。
我们发现,当设置size=1GB时,IOPS会显著提高到568,IO平均响应时间会降到7ms(队列深度为4)。这是因为当寻址空间为1GB时,磁头需要移动的距离变小了,每次IO请求的服务时间就降低了,这就是空间局部性原理。假如我们测试的RAID卡或者是磁盘阵列(SAN),它们可能会用Cache把这1GB的数据全部缓存,极大降低了IO请求的服务时间(内存的写 *** 作比硬盘的写 *** 作快很1000倍)。所以设置寻址空间为1GB的意义不大,因为我们是要测试硬盘的全盘性能,而不是Cache的性能。
硬盘优化
硬盘厂商提高硬盘性能的方法主要是降低服务时间(延迟):
提高转速(降低旋转时间和传输时间)
增加Cache(降低写延迟,但不会提高IOPS)
提高单磁道密度(变相提高传输时间)
RAID测试
RAID0/RAID5/RAID6的多块磁盘可以同时服务,其实就是提高并行度,这样极大提高了性能(相当于银行有多个柜台)。
以前测试过12块RAID0,100GB的寻址空间,4KB随机写,逐步提高队列深度,IOPS会提高,因为它有12块磁盘(12个磁头同时工作),并行度是12。
队列深度 IOPS 平均响应时间
1 1215995842 0820917
2 4657061317 0428420
4 5369326970 0744060
8 5377387303 1486629
16 5487911660 2914048
32 5470972663 5846616
64 5520234015 11585251
128 5542739816 23085843
256 5513994611 46401606
RAID卡厂商优化的方法也是降低服务时间:
使用大内存Cache
使用IO处理器,降低XOR *** 作的延迟。
使用更大带宽的硬盘接口

SAN测试
对于低端磁盘阵列,使用单机IOmeter就可以测试出它的IOPS和MBPS的峰值,但是对于高端磁盘阵列,就需要多机并行测试才能得到IOPS和MBPS的峰值(IOmeter支持多机并行测试)。下图是纪念照。
磁盘阵列厂商通过以下手段降低服务时间:
更快的存储网络,比如FC和IB,延时更低。
读写Cache。写数据到Cache之后就马上返回,不需要落盘。 而且磁盘阵列有更多的控制器和硬盘,大大提高了并行度。
现在的存储厂商会找SPC帮忙测试自己的磁盘阵列产品(或全闪存阵列), 并给SPC支付费用,这就是赤裸裸的标准垄断。国内也有做存储系统测试的,假如你要测试磁盘阵列,可以找NSTC (广告时间)。
SSD测试
SSD的延时很低,并行度很高(多个nand块同时工作),缺点是寿命和GC造成的响应时间不稳定。
推荐用IOMeter进行测试,使用大队列深度,并进行长时间测试,这样可以测试出SSD的真实性能。
下图是storagereview对一些SSD硬盘做的4KB随机写的长时间测试,可以看出有些SSD硬盘的最大响应时间很不稳定,会飙高到几百ms,这是不可接受的。
云硬盘测试
我们通过两方面来提高云硬盘的性能的:
降低延迟(使用SSD,使用万兆网络,优化代码,减少瓶颈)
提高并行度(数据分片,同时使用整个集群的所有SSD)
在Linux下测试云硬盘
在Linux下,你可以使用FIO来测试
*** 作系统:Ubuntu 1404
CPU: 2
Memory: 2GB
云硬盘大小: 1TB(SLA: 6000 IOPS, 170MB/s吞吐率 )
安装fio:
#sudo apt-get install fio
再次介绍一下FIO的测试参数:
ioengine: 负载引擎,我们一般使用libaio,发起异步IO请求。
bs: IO大小
direct: 直写,绕过 *** 作系统Cache。因为我们测试的是硬盘,而不是 *** 作系统的Cache,所以设置为1。
rw: 读写模式,有顺序写write、顺序读read、随机写randwrite、随机读randread等。
size: 寻址空间,IO会落在 [0, size)这个区间的硬盘空间上。这是一个可以影响IOPS的参数。一般设置为硬盘的大小。
filename: 测试对象
iodepth: 队列深度,只有使用libaio时才有意义。这是一个可以影响IOPS的参数。
runtime: 测试时长
4K随机写测试
我们首先进行4K随机写测试,测试参数和测试结果如下所示:
#fio -ioengine=libaio -bs=4k -direct=1 -thread -rw=randwrite -size=100G -filename=/dev/vdb \
-name="EBS 4KB randwrite test" -iodepth=32 -runtime=60
蓝色方框表示IOPS是5900,在正常的误差范围内。绿色方框表示IO请求的平均响应时间为542ms, 方框表示95%的IO请求的响应时间是小于等于 624 ms的。
4K随机读测试
我们再来进行4K随机读测试,测试参数和测试结果如下所示:
#fio -ioengine=libaio -bs=4k -direct=1 -thread -rw=randread -size=100G -filename=/dev/vdb \
-name="EBS 4KB randread test" -iodepth=8 -runtime=60
512KB顺序写测试
最后我们来测试512KB顺序写,看看云硬盘的最大MBPS(吞吐率)是多少,测试参数和测试结果如下所示:
#fio -ioengine=libaio -bs=512k -direct=1 -thread -rw=write -size=100G -filename=/dev/vdb \
-name="EBS 512KB seqwrite test" -iodepth=64 -runtime=60

蓝色方框表示MBPS为174226KB/s,约为170MB/s。
使用dd测试吞吐率
其实使用dd命令也可以测试出170MB/s的吞吐率,不过需要设置一下内核参数,详细介绍在 128MB/s VS 170MB/s 章节中。
在Windows下测试云硬盘
在Windows下,我们一般使用IOMeter测试磁盘的性能,IOMeter不仅功能强大,而且很专业,是测试磁盘性能的首选工具。
IOMeter是图形化界面(浓浓的MFC框架的味道),非常方便 *** 作,下面我将使用IOMeter测试我们UOS上1TB的云硬盘。
*** 作系统:Window Server 2012 R2 64
CPU: 4
Memory: 8GB
云硬盘大小: 1TB
当你把云硬盘挂载到Windows主机之后,你还需要在windows *** 作系统里面设置硬盘为联机状态。
4K随机写测试
打开IOMeter(你需要先下载),你会看到IOMeter的主界面。在右边,你回发现4个worker(数量和CPU个数相同),因为我们现在只需要1个worker,所以你需要把其他3个worker移除掉。

现在让我们来测试硬盘的4K随机写,我们选择好硬盘(Red Hat VirtIO 0001),设置寻址空间(Maximum Disk Size)为50GB(每个硬盘扇区大小是512B,所以一共是 50102410241024/512 = 104857600),设置队列深度(Outstanding I/Os)为64。
然后在测试集中选择”4KiB ALIGNED; 0% Read; 100% random(4KB对齐,100%随机写 *** 作)” 测试
然后设置测试时间,我们设置测试时长为60秒,测试之前的预热时间为10秒(IOMeter会发起负载,但是不统计这段时间的结果)。
在最后测试之前,你可以设置查看实时结果,设置实时结果的更新频率是5秒钟。最后点击绿色旗子开始测试。
在测试过程中,我们可以看到实时的测试结果,当前的IOPS是6042,平均IO请求响应时间是1056ms,这个测试还需要跑38秒,这个测试轮回只有这个测试。
我们可以看到IOMeter自动化程度很高,极大解放测试人员的劳动力,而且可以导出CSV格式的测试结果。
顺序读写测试
我们再按照上面的步骤,进行了顺序读/写测试。下面是测试结果:
IO大小 读写模式 队列深度 MBPS
顺序写吞吐测试 512KB 顺序写 64 16407 MB/s
顺序读吞吐测试 256KB 顺序读 64 17932 MB/s
云硬盘的响应时间
当前云硬盘写 *** 作的主要延迟是
网络传输
多副本,写三份(数据强一致性)
三份数据都落盘(数据持久化)之后,才返回
IO处理逻辑
我们当前主要是优化IO处理逻辑,并没有去优化2和3,这是因为我们是把用户数据的安全性放在第一位。
128MB/s VS 170MB/s
回到最开始的问题 “为什么使用dd命令测试云硬盘只有128MB/s”, 这是因为目前云硬盘在处理超大IO请求时的延迟比SSD高(我们会不断进行优化),现在我们有两种方法来获得更高的MBPS:
设置max_sectors_kb为256 (系统默认为512),降低延迟
使用fio来测试,加大队列深度
通过设置max_sectors_kb这个参数,使用dd也可以测出170MB/s的吞吐量
root@ustack:~# cat /sys/block/vdb/queue/max_sectors_kb
512
root@ustack:~# echo "256" > /sys/block/vdb/queue/max_sectors_kb
root@ustack:~#
root@ustack:~# dd if=/dev/zero of=/dev/vdb bs=32M count=40 oflag=direct
40+0 records in
40+0 records out
1342177280 bytes (13 GB) copied, 751685 s, 179 MB/s
root@ustack:~#
同时查看IO请求的延迟:
root@ustack:~# iostat -x vdb 5 100

Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await r_await w_await svctm %util
vdb 000 000 000 68800 000 17612800 51200 5459 9347 000 9347 140 9656
下面是使用fio工具的测试结果,也可以得到170MB/s的吞吐率。
不可测试的指标
IOPS和MBPS是用户可以使用工具测试的指标,云硬盘还有一些用户不可测量的指标
数据一致性
数据持久性
数据可用性
这些指标我们只能通过根据系统架构和约束条件计算得到,然后转告给用户。这些指标衡量着公有云厂商的良心,有机会会专门进行介绍。
总结
上面介绍了一下测试工具和一些观点,希望对你有所帮助。
测试需要定性和定量
了解存储模型可以帮助你更好的进行测试
增加队列深度可以有效测试出IOPS和MBPS的峰值

智能制造。智能门锁,可以上传盗窃信息、物流配送最佳时间等。智能机器人。监控冰箱、与冰箱里的食物保存状态。

智能汽车,透过路径分析节省燃料或时间。智能运动检测程序。智能园艺浇水。智能家居系统,有效的节能与生活辅助。智能供应链定制、智能环境监测系统、智能贩卖机、智能城市、智能交通。

当然,物联网还会有许多广泛的用途,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、老人护理、个人健康、花卉栽培、水系监测、食品溯源、敌情侦查和情报搜集等多个领域。

扩展资料:

物联网的基本特征从通信对象和过程来看,物与物、人与物之间的信息交互是物联网的核心。物联网的基本特征可概括为整体感知、可靠传输和智能处理 。

整体感知—可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。

可靠传输—通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。

智能处理—使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。根据物联网的以上特征,结合信息科学的观点,围绕信息的流动过程,可以归纳出物联网处理信息的功能:

获取信息的功能。主要是信息的感知、识别,信息的感知是指对事物属性状态及其变化方式的知觉和敏感;信息的识别指能把所感受到的事物状态用一定方式表示出来。

传送信息的功能。主要是信息发送、传输、接收等环节,最后把获取的事物状态信息及其变化的方式从时间(或空间)上的一点传送到另一点的任务,这就是常说的通信过程。

处理信息的功能。是指信息的加工过程,利用已有的信息或感知的信息产生新的信息,实际是制定决策的过程。

施效信息的功能。指信息最终发挥效用的过程,有很多的表现形式,比较重要的是通过调节对象事物的状态及其变换方式,始终使对象处于预先设计的状态。

参考资料来源:百度百科-物联网

物联网id可以理解为物联网编号,就如同身份z一样每台设备一个号码,进行与其他设备之间的区分。物联网网卡设备id也是这个道理,网卡id就是网卡mac地址,通过这个唯一地址进行信息传输,就如同家庭地址一样,可有很多设备,地址是唯一的。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12988002.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存