大数据怎么发挥大价值

大数据怎么发挥大价值,第1张

1 大数据兴起预示逗信息时代地进入新阶段
11 看待大数据要有历史性的眼光
信息时代是相对于农业和工业时代而言的一段相当长的时间。不同时代的生产要素和社会发展驱动力有明显差别。信息时代的标志性技术发明是数字计算机、集成电路、光纤通信和互联网(万维网)。尽管媒体上大量出现逗大数据时代地的说法,但大数据、云计算等新技术目前还没有出现与上述划时代的技术发明可媲美的技术突破,难以构成一个超越信息时代的新时代。信息时代可以分成若干阶段,大数据等新技术的应用标志着信息社会将进入一个新阶段。
考察分析100年以上的历史长河可以发现,信息时代与工业时代的发展规律有许多相似之处。电气化时代与信息时代生产率的提高过程惊人地相似。都是经过20~30年扩散储备之后才有明显提高,分界线分别是1915年和1995年。笔者猜想,信息技术经过几十年的扩散储备后,21世纪的前30年可能是信息技术提高生产率的黄金时期。
12 从逗信息时代新阶段地的高度认识逗大数据地
中国已开始进入信息时代,但许多人的思想还停留在工业时代。经济和科技工作中出现的许多问题,其根源是对时代的认识不到位。18-19世纪中国落后挨打,根源是满清政府没有认识到时代变了,我们不能重犯历史性的错误。
中央提出中国进入经济逗新常态地以后,媒体上有很多讨论,但多数是为经济增速降低做解释,很少有从时代改变的角度论述逗新常态地的文章。笔者认为,经济新常态意味着中国进入了以信息化带动新型工业化、城镇化和农业现代化的新阶段,是经济和社会管理的跃迁,不是权宜之计,更不是倒退。
大数据、移动互联网、社交网络、云计算、物联网等新一代信息技术构成的IT架构逗第三平台地是信息社会进入新阶段的标志,对整个经济的转型有引领和带动作用。媒体上经常出现的互联网、创客、逗第二次机器革命地、逗工业40地等都与大数据和云计算有关。大数据和云计算是新常态下提高生产率的新杠杆,所谓创新驱动发展就是主要依靠信息技术促进生产率的提高。
13 大数据可能是中国信息产业从跟踪走向引领的突破口
中国的大数据企业已经有相当好的基础。全球十大互联网服务企业中国占有4席(阿里巴巴、腾讯、百度和京东),其他6个Top10 互联网服务企业全部是美国企业,欧洲和日本没有互联网企业进入Top10。这说明中国企业在基于大数据的互联网服务业务上已处于世界前列。在发展大数据技术上,我国有可能改变过去30年技术受制于人的局面,在大数据应用上中国有可能在全世界起到引领作用。
但是,企业的规模走在世界前列并不表示我国在大数据技术上领先。实际上,国际上目前流行的大数据主流技术没有一项是我国开创的。开源社区和众包是发展大数据技术和产业的重要途径,但我们对开源社区的贡献很小,在全球近万名社区核心志愿者中,我国可能不到200名。我们要吸取过去基础研究为企业提供核心技术不够的教训,加强大数据基础研究和前瞻技术研究,努力攻克大数据核心和关键技术。
2 理解大数据需要上升到文化和认识论的高度
21 数据文化是一种先进文化
数据文化的本质是尊重客观世界的实事求是精神,数据就是事实。重视数据就是强调用事实说话、按理性思维的科学精神。中国人的传统习惯是定性思维而不是定量思维。目前许多城市在开展政府数据开放共享工作,但是发现多数老百姓对政府要开放的数据并不感兴趣。要让大数据走上健康的发展轨道,首先要大力弘扬数据文化。本文讲的数据文化不只是大数据用于文艺、出版等文化产业,而是指全民的数据意识。全社会应认识到:信息化的核心是数据,只有政府和大众都关注数据时,才能真正理解信息化的实质;数据是一种新的生产要素,大数据的利用可以改变资本和土地等传统要素在经济中的权重。
有人将逗上帝与数据共舞地归纳为美国文化的特点之一,说的是美国人既有对神的诚意,又有通过数据求真的理性。美国从镀金时代到进步主义时期完成了数据文化的思维转变,南北战争之后人口普查的方法被应用到很多领域,形成了数据预测分析的思维方式。近百年来美国和西方各国的现代化与数据文化的传播渗透有密切关系,我国要实现现代化也必须强调数据文化。
提高数据意识的关键是要理解大数据的战略意义。数据是与物质、能源一样重要的战略资源,数据的采集和分析涉及每一个行业,是带有全局性和战略性的技术。从硬技术到软技术的转变是当今全球性的技术发展趋势,而从数据中发现价值的技术正是最有活力的软技术,数据技术与数据产业的落后将使我们像错过工业革命机会一样延误一个时代。
22 理解大数据需要有正确的认识论
历史上科学研究是从逻辑演绎开始的,欧几里得几何的所有定理可从几条公理推导出来。从伽利略和牛顿开始,科学研究更加重视自然观察和实验观察,在观察基础上通过归纳方法提炼出科学理论,逗科学始于观察地成为科学研究和认识论的主流。经验论和唯理论这两大流派都对科学的发展做出过重大贡献,但也暴露出明显的问题,甚至走入极端。理性主义走向极端就成为康德所批判的独断主义,经验主义走入极端就变成怀疑论和不可知论。
20世纪30年代,德国哲学家波普尔提出了被后人称为逗证伪主义地的认识论观点,他认为科学理论不能用归纳法证实,只能被试验发现的反例逗证伪地,因而他否定科学始于观察,提出逗科学始于问题地的著名观点[3]。证伪主义有其局限性,如果严格遵守证伪法则,万有引力定律、原子论等重要理论都可能被早期的所谓反例扼杀。但逗科学始于问题地的观点对当前大数据技术的发展有指导意义。
大数据的兴起引发了新的科学研究模式:逗科学始于数据地。从认识论的角度看,大数据分析方法与逗科学始于观察地的经验论较为接近,但我们要牢记历史的教训,避免滑入否定理论作用的经验主义泥坑。在强调逗相关性地的时候不要怀疑逗因果性地的存在;在宣称大数据的客观性、中立性的时候,不要忘了不管数据的规模如何,大数据总会受制于自身的局限性和人的偏见。不要相信这样的预言:逗采用大数据挖掘,你不需要对数据提出任何问题,数据就会自动产生知识地。面对像大海一样的巨量数据,从事数据挖掘的科技人员最大的困惑是,我们想捞的逗针地是什么看这海里究竟有没有逗针地看也就是说,我们需要知道要解决的问题是什么。从这个意义上讲,逗科学始于数据地与逗科学始于问题地应有机地结合起来。
对逗原因地的追求是科学发展的永恒动力。但是,原因是追求不完的,人类在有限的时间内不可能找到逗终极真理地。在科学的探索途中,人们往往用逗这是客观规律地解释世界,并不立即追问为什么有这样的客观规律。也就是说,传统科学并非只追寻因果性,也可以用客观规律作为结论。大数据研究的结果多半是一些新的知识或新的模型,这些知识和模型也可以用来预测未来,可以认为是一类局部性的客观规律。科学史上通过小数据模型发现一般性规律的例子不少,比如开普勒归纳的天体运动规律等;而大数据模型多半是发现一些特殊性的规律。物理学中的定律一般具有必然性,但大数据模型不一定具有必然性,也不一定具有可演绎性。大数据研究的对象往往是人的心理和社会,在知识阶梯上位于较高层,其自然边界是模糊的,但有更多的实践特征。大数据研究者更重视知行合一,相信实践论。大数据认识论有许多与传统认识论不同的特点,我们不能因其特点不同就否定大数据方法的科学性。大数据研究挑战了传统认识论对因果性的偏爱,用数据规律补充了单一的因果规律,实现了唯理论和经验论的数据化统一,一种全新的大数据认识论正在形成。
3 正确认识大数据的价值和效益
31 大数据的价值主要体现为它的驱动效应
人们总是期望从大数据中挖掘出意想不到的逗大价值地。实际上大数据的价值主要体现在它的驱动效应,即带动有关的科研和产业发展,提高各行各业通过数据分析解决困难问题和增值的能力。大数据对经济的贡献并不完全反映在大数据公司的直接收入上,应考虑对其他行业效率和质量提高的贡献。大数据是典型的通用技术,理解通用技术要采用逗蜜蜂模型地:蜜蜂的效益主要不是自己酿的蜂蜜,而是蜜蜂传粉对农业的贡献。
电子计算机的创始人之一冯·诺依曼曾指出:逗在每一门科学中,当通过研究那些与终极目标相比颇为朴实的问题,发展出一些可以不断加以推广的方法时,这门学科就得到了巨大的进展。地我们不必天天期盼奇迹出现,多做一些逗颇为朴实地的事情,实际的进步就在扎扎实实的努力之中。媒体喜欢宣传一些令人惊奇的大数据成功案例,对这些案例我们应保持清醒的头脑。据Intel中国研究院首席工程师吴甘沙在一次报告中透露,所谓逗啤酒加尿布地的数据挖掘经典案例,其实是Teradata公司一位经理编出来的逗故事地,历史上并没有发生过[4]。即使有这个案例,也不说明大数据分析本身有什么神奇,大数据中看起来毫不相关的两件事同时或相继出现的现象比比皆是,关键是人的分析推理找出为什么两件事物同时或相继出现,找对了理由才是新知识或新发现的规律,相关性本身并没有多大价值。
有一个家喻户晓的寓言可以从一个角度说明大数据的价值:一位老农民临终前告诉他的3个儿子,他在他家的地中埋藏了一罐金子,但没有讲埋在哪里。
他的儿子们把他家所有的地都深挖了一遍,没有挖到金子,但由于深挖了土地,从此庄稼收成特别好。数据收集、分析的能力提高了,即使没有发现什么普适的规律或令人完全想不到的新知识,大数据的价值也已逐步体现。
32 大数据的力量来自逗大成智慧地
每一种数据来源都有一定的局限性和片面性,只有融合、集成各方面的原始数据,才能反映事物的全貌。事物的本质和规律隐藏在各种原始数据的相互关联之中。不同的数据可能描述同一实体,但角度不同。对同一个问题,不同的数据能提供互补信息,可对问题有更深入的理解。因此在大数据分析中,汇集尽量多种来源的数据是关键。
数据科学是数学(统计、代数、拓扑等)、计算机科学、基础科学和各种应用科学融合的科学,类似钱学森先生提出的逗大成智慧学地[5]。钱老指出:逗必集大成,才能得智慧地。大数据能不能出智慧,关键在于对多种数据源的集成和融合。IEEE计算机学会最近发布了2014年的计算机技术发展趋势预测报告,重点强调逗无缝智慧(seamless intelligence)地。发展大数据的目标就是要获得协同融合的逗无缝智慧地。单靠一种数据源,即使数据规模很大,也可能出现逗瞎子摸象地一样的片面性。数据的开放共享不是锦上添花的工作,而是决定大数据成败的必要前提。
大数据研究和应用要改变过去各部门和各学科相互分割、独立发展的传统思路,重点不是支持单项技术和单个方法的发展,而是强调不同部门、不同学科的协作。数据科学不是垂直的逗烟囱地,而是像环境、能源科学一样的横向集成科学。
33 大数据远景灿烂,但近期不能期望太高
交流电问世时主要用作照明,根本想象不到今天无处不在的应用。大数据技术也一样,将来一定会产生许多现在想不到的应用。我们不必担心大数据的未来,但近期要非常务实地工作。人们往往对近期的发展估计过高,而对长期的发展估计不足。Gartner公司预测,大数据技术要在5~10年后才会成为较普遍采用的主流技术,对发展大数据技术要有足够的耐心。
大数据与其他信息技术一样,在一段时间内遵循指数发展规律。指数发展的特点是,从一段历史时期衡量(至少30年),前期发展比较慢,经过相当长时间(可能需要20年以上)的积累,会出现一个拐点,过了拐点以后,就会出现爆炸式的增长。但任何技术都不会永远保持逗指数性地增长,一般而言,高技术发展遵循Gartner公司描述的技术成熟度曲线(hype cycle),最后可能进入良性发展的稳定状态或者走向消亡。
需要采用大数据技术来解决的问题往往都是十分复杂的问题,比如社会计算、生命科学、脑科学等,这些问题绝不是几代人的努力就可以解决的。宇宙经过百亿年的演化,才出现生物和人类,其复杂和巧妙堪称绝伦,不要指望在我们这一代人手中就能彻底揭开其奥妙。展望数百万年甚至更长远的未来,大数据技术只是科学技术发展长河中的一朵浪花,对10~20年大数据研究可能取得的科学成就不能抱有不切实际的幻想。
4 从复杂性的角度看大数据研究和应用面临的挑战
大数据技术和人类探索复杂性的努力有密切关系。20世纪70年代,新三论(耗散结构论、协同论、突变论)的兴起对几百年来贯穿科学技术研究的还原论发起了挑战。1984年盖尔曼等3位诺贝尔奖得主成立以研究复杂性为主的圣菲研究所,提出超越还原论的口号,在科技界掀起了一场复杂性科学运动。虽然雷声很大,但30年来并未取得预期的效果,其原因之一可能是当时还没有出现解决复杂性的技术。
集成电路、计算机与通信技术的发展大大增强了人类研究和处理复杂问题的能力。大数据技术将复杂性科学的新思想发扬光大,可能使复杂性科学得以落地。复杂性科学是大数据技术的科学基础,大数据方法可以看作复杂性科学的技术实现。大数据方法为还原论与整体论的辩证统一提供了技术实现途径。大数据研究要从复杂性研究中吸取营养,从事数据科学研究的学者不但要了解20世纪的逗新三论地,可能还要学习与超循环、混沌、分形和元胞自动机等理论有关的知识,扩大自己的视野,加深对大数据机理的理解。
大数据技术还不成熟,面对海量、异构、动态变化的数据,传统的数据处理和分析技术难以应对,现有的数据处理系统实现大数据应用的效率较低,成本和能耗较大,而且难以扩展。这些挑战大多来自数据本身的复杂性、计算的复杂性和信息系统的复杂性。
41 数据复杂性引起的挑战
图文检索、主题发现、语义分析、情感分析等数据分析工作十分困难,其原因是大数据涉及复杂的类型、复杂的结构和复杂的模式,数据本身具有很高的复杂性。目前,人们对大数据背后的物理意义缺乏理解,对数据之间的关联规律认识不足,对大数据的复杂性和计算复杂性的内在联系也缺乏深刻理解,领域知识的缺乏制约了人们对大数据模型的发现和高效计算方法的设计。形式化或定量化地描述大数据复杂性的本质特征及度量指标,需要深入研究数据复杂性的内在机理。人脑的复杂性主要体现在千万亿级的树突和轴突的链接,大数据的复杂性主要也体现在数据之间的相互关联。理解数据之间关联的奥秘可能是揭示微观到宏观逗涌现地规律的突破口。大数据复杂性规律的研究有助于理解大数据复杂模式的本质特征和生成机理,从而简化大数据的表征,获取更好的知识抽象。为此,需要建立多模态关联关系下的数据分布理论和模型,理清数据复杂度和计算复杂度之间的内在联系,奠定大数据计算的理论基础。
42 计算复杂性引起的挑战
大数据计算不能像处理小样本数据集那样做全局数据的统计分析和迭代计算,在分析大数据时,需要重新审视和研究它的可计算性、计算复杂性和求解算法。大数据样本量巨大,内在关联密切而复杂,价值密度分布极不均衡,这些特征对建立大数据计算范式提出了挑战。对于PB级的数据,即使只有线性复杂性的计算也难以实现,而且,由于数据分布的稀疏性,可能做了许多无效计算。
传统的计算复杂度是指某个问题求解时需要的时间空间与问题规模的函数关系,所谓具有多项式复杂性的算法是指当问题的规模增大时,计算时间和空间的增长速度在可容忍的范围内。传统科学计算关注的重点是,针对给定规模的问题,如何逗算得快地。而在大数据应用中,尤其是流式计算中,往往对数据处理和分析的时间、空间有明确限制,比如网络服务如果回应时间超过几秒甚至几毫秒,就会丢失许多用户。大数据应用本质上是在给定的时间、空间限制下,如何逗算得多地。从逗算得快地到逗算得多地,考虑计算复杂性的思维逻辑有很大的转变。所谓逗算得多地并不是计算的数据量越大越好,需要探索从足够多的数据,到刚刚好的数据,再到有价值的数据的按需约简方法。
基于大数据求解困难问题的一条思路是放弃通用解,针对特殊的限制条件求具体问题的解。人类的认知问题一般都是NP难问题,但只要数据充分多,在限制条件下可以找到十分满意的解,近几年自动驾驶汽车取得重大进展就是很好的案例。为了降低计算量,需要研究基于自举和采样的局部计算和近似方法,提出不依赖于全量数据的新型算法理论,研究适应大数据的非确定性算法等理论。
43 系统复杂性引起的挑战
大数据对计算机系统的运行效率和能耗提出了苛刻要求,大数据处理系统的效能评价与优化问题具有挑战性,不但要求理清大数据的计算复杂性与系统效率、能耗间的关系,还要综合度量系统的吞吐率、并行处理能力、作业计算精度、作业单位能耗等多种效能因素。针对大数据的价值稀疏性和访问弱局部性的特点,需要研究大数据的分布式存储和处理架构。
大数据应用涉及几乎所有的领域,大数据的优势是能在长尾应用中发现稀疏而珍贵的价值,但一种优化的计算机系统结构很难适应各种不同的需求,碎片化的应用大大增加了信息系统的复杂性,像昆虫种类一样多(500多万种)的大数据和物联网应用如何形成手机一样的巨大市场,这就是所谓逗昆虫纲悖论地[6]。为了化解计算机系统的复杂性,需要研究异构计算系统和可塑计算技术。
大数据应用中,计算机系统的负载发生了本质性变化,计算机系统结构需要革命性的重构。信息系统需要从数据围着处理器转改变为处理能力围着数据转,关注的重点不是数据加工,而是数据的搬运;系统结构设计的出发点要从重视单任务的完成时间转变到提高系统吞吐率和并行处理能力,并发执行的规模要提高到10亿级以上。构建以数据为中心的计算系统的基本思路是从根本上消除不必要的数据流动,必要的数据搬运也应由逗大象搬木头地转变为逗蚂蚁搬大米地。
5 发展大数据应避免的误区
51 不要一味追求逗数据规模大地
大数据主要难点不是数据量大,而是数据类型多样、要求及时回应和原始数据真假难辨。现有数据库软件解决不了非结构化数据,要重视数据融合、数据格式的标准化和数据的互 *** 作。采集的数据往往质量不高是大数据的特点之一,但尽可能提高原始数据的质量仍然值得重视。脑科学研究的最大问题就是采集的数据可信度差,基于可信度很差的数据难以分析出有价值的结果。
一味追求数据规模大不仅会造成浪费,而且效果未必很好。多个来源的小数据的集成融合可能挖掘出单一来源大数据得不到的大价值。应多在数据的融合技术上下功夫,重视数据的开放与共享。所谓数据规模大与应用领域有密切关系,有些领域几个PB的数据未必算大,有些领域可能几十TB已经是很大的规模。
发展大数据不能无止境地追求逗更大、更多、更快地,要走低成本、低能耗、惠及大众、公正法治的良性发展道路,要像现在治理环境污染一样,及早关注大数据可能带来的逗污染地和侵犯隐私等各种弊端。
52 不要逗技术驱动地,要逗应用为先地
新的信息技术层出不穷,信息领域不断冒出新概念、新名词,估计继逗大数据地以后,逗认知计算地、逗可穿戴设备地、逗机器人地等新技术又会进入炒作高峰。我们习惯于跟随国外的热潮,往往不自觉地跟着技术潮流走,最容易走上逗技术驱动地的道路。实际上发展信息技术的目的是为人服务,检验一切技术的唯一标准是应用。我国发展大数据产业一定要坚持逗应用为先地的发展战略,坚持应用牵引的技术路线。技术有限,应用无限。各地发展云计算和大数据,一定要通过政策和各种措施调动应用部门和创新企业的积极性,通过跨界的组合创新开拓新的应用,从应用中找出路。
53 不能抛弃逗小数据地方法
流行的逗大数据地定义是:无法通过目前主流软件工具在合理时间内采集、存储、处理的数据集。这是用不能胜任的技术定义问题,可能导致认识的误区。按照这种定义,人们可能只会重视目前解决不了的问题,如同走路的人想踩着自己身前的影子。其实,目前各行各业碰到的数据处理多数还是逗小数据地问题。我们应重视实际碰到的问题,不管是大数据还是小数据。
统计学家们花了200多年,总结出认知数据过程中的种种陷阱,这些陷阱不会随着数据量的增大而自动填平。大数据中有大量的小数据问题,大数据采集同样会犯小数据采集一样的统计偏差。Google公司的流感预测这两年失灵,就是由于搜索推荐等人为的干预造成统计误差。
大数据界流行一种看法:大数据不需要分析因果关系、不需要采样、不需要精确数据。这种观念不能绝对化,实际工作中要逻辑演绎和归纳相结合、白盒与黑盒研究相结合、大数据方法与小数据方法相结合。
54 要高度关注构建大数据平台的成本
目前全国各地都在建设大数据中心,吕梁山下都建立了容量达2 PB以上的数据处理中心,许多城市公安部门要求存储3个月以上的高清监控录像。这些系统的成本都非常高。数据挖掘的价值是用成本换来的,不能不计成本,盲目建设大数据系统。什么数据需要保存,要保存多少时间,应当根据可能的价值和所需的成本来决定。大数据系统技术还在研究之中,美国的E级超级计算机系统要求能耗降低1 000倍,计划到2024年才能研制出来,用现在的技术构建的巨型系统能耗极高。
我们不要攀比大数据系统的规模,而是要比实际应用效果,比完成同样的事消耗更少的资源和能量。先抓老百姓最需要的大数据应用,因地制宜发展大数据。发展大数据与实现信息化的策略一样:目标要远大、起步要精准、发展要快速。

数字经济是以新一代信息技术为依托,在农业经济、工业经济之后的一种新经济形态。其主要特征是:数据是重要生产要素,网络是重要载体,信息技术应用是其中最重要的推动力。数字经济的概念及其演变,经历了三个阶段。第一个阶段,探索期。数字经济概念源于互联网商用及发展,主要用于指称互联网发展所带来的新的商业模式——电子商务与电子交易。同时,学界也展开了概念探讨。第二阶段,拓展期。政府政策开始助力数字经济,概念内涵扩展。
数字经济包括日常的共享单车、外卖、互联网金融、网购等等。数字经济具体到细分领域,还包括人工智能的应用和物联网的发展。

对于这个问题,这个就是这个社会发展的的一个趋势。也就是科技发展的趋势,科技产品的发展肯定也是遵守人们的使用习惯的,因为球形更适合人们方便实用,所以就这样发展出来了。随着现在科学技术的发展和进步,我们已经走出了一起那个茹毛饮血的时代,来到科技发达的时代,科技的发展也相对应给我们的生活带来了很大的发便。
一千年前的人们,过着简单、坚信的生活,那时候的人们晚上没有光明,只求平平安安、吃饱喝足,维持正常的生活,为此人们烧香拜佛,祈祷平安,马车也是唯一出行的交通工具,但是价格也是异常昂贵,老百姓只能徒步出行,若是生病了,需跋山涉水去看病,最后却因路途遥远耽误看病,错过了治疗的时间,因此老百姓的寿命也是很短暂的。
随着科技发展迅速,烧香拜佛依旧存在,但是不存在的是人们以前愚笨的思想和观念。医疗技术也是有了质的飞跃,很大的突破,基本上可以将生活中所有的疾病全部治愈,从而延长人们的寿命,使得被治愈的人们有更多的时间和精力,去感受大自然的美好,享受大自然给予人们的馈赠。人们在不断的探索和发明中也不断的体现了自我价值和肯定,从而也收获了很大的快乐。
在古代,背井离乡、向京赶考的游子们由于长时间的在外生活、工作,非常想念家乡的亲人,写上一封家书,迟迟也等不到家人的回信,思念的心情也更加的强烈。如今,人们发明了手机,一个视频缓解了相思之苦,发明了汽车、飞机,大大的也减缓了思乡回家的漫漫长路。
科技时代的发展和进步,慢慢的改善着我们的生活环境和质量,人们的生活也越来越好,是我们人类前进的动力,给我们带来了很大的方便,但同时也带来了很多的负面影响,例如:环境的问题,大规模的废水排在河里,使得人们吃不到新鲜的海鲜产品,浪费了很多宝贵的水资源,却不想后果的严重性,所以我们要充分利用好科技发展给我们带来的好处,也不能忽略我们赖以生存的环境。从技术体系结构来看,物联网涉及到六大层次,分别是设备、网络、物联网平台、数据分析、应用和安全,其中物联网平台与云计算有密切的联系,数据分析与大数据有密切的联系,而应用层则会涉及到人工智能技术。所以,物联网当前也普遍被认为是人工智能技术落地应用的重要场景,所以产业互联网要想落地应用一定离不开物联网。
物联网、人工智能目前与人们生活关系比较密切的应用领域包括智慧城市、自动驾驶。所以,这个就是科技的发展。

从2013年初开始,对于大数据爆发的焦虑感,紧迫感,不由自主地被卷入的甚至无力的感觉,驱动众多行业、企业和团体去关注和开始接触和了解大 数据,自觉或不自觉的,主动或不得已地去融入这波洪流。但是,真的说到大数据,我们中国到底有多少数据量,它们都分布在哪些行业,哪些数据是目 前可用的,哪些行业已经在使用数据,进入产业互联网和数据引导的变革了?
可能看到的版图依旧模糊。因此,我们怀抱很好的希望,以第一个吃螃蟹并期待来自行业的矫正和拍砖的态度,首先尝试对于国内各个领域,行业以 及机构的数据拥有情况,使用情况以及未来路径做一个粗犷地调研、梳理和判断,对大数据时代我国各个领域数据资产的拥有和使用情况,也就是我们数 据资产的家底做个盘点,也对各个行业、系统进军大数据,以及拥抱产业互联网的进度和未来做个简单判断。事实上,大数据之题无疑繁若星辰,然而只 有在相对完整的视图下,繁星若尘,我们才可得以一窥天机。
从我们手头掌握的数据来看,2013年度,中国存储市场出货容量超过1个EB(1EB=多少),存储总量而IDC曾经发布的预测表明在未来的3-4年,中国存储总 容量可能达到18个EB。从数据存储市场的需求来看,互联网、医疗健康、通信、公共安全以及军工等行业的需求是主要的,且上升态势明显。
鉴于存储和服务器的紧密相关,我们从已经获得的资料可以知道,目前全球运行的服务器总量超过5000万台,美国国内运行的服务器总体容量接近 1000万台。从各种市场公开数据来看,2013年中国内地服务器销售总数接近为100万台。大体估算,截止到2013年底,中国内地整体在运行的服务器总数 量在300万台以上。
从现有存储容量看,中国目前可存储数据容量大约在8EB-10EB左右,现有的可以保存下来的数据容量大约在5EB左右,且每两年左右会翻上一倍。这些 被存储数据的大体分布为:媒体/互联网占据现有容量的1/3,政府部门/电信企业占据1/3,其他的金融、教育、制造、服务业各部分占据剩余1/3数据量 。
公开数据显示,互联网搜索巨头百度2013年拥有数据量接近EB级别、阿里、腾讯声明自己存储的数据总量都达到了百PB以上。此外,电信、医疗、金 融、公共安全、交通、气象等各个方面保存的数据量也都达到数十或者上百PB级别。
在目前被广泛引用的IDC和EMC联合发布的“2020年的数字宇宙”报告 预测到2020年,全球数字宇宙将会膨胀到40ZB,均摊每个人身上是5200GB以上,这个量将会如何被有效存储和应用,我们眼下还很难想象。然而我们 看到该报告指出,从现在起到2020年,全球数字宇宙的膨胀率大约为每两年翻一番。事实上,根据上述调查结论和服务器容量调查,我们也能做出个相对 合理的推断:目前,全球产生的数据量中仅有1%左右的数据能够被保存下来,也就是说今天全球能够被保存下来的数据也就是在50EB左右,而其中被标记 并用于分析的数据更是不到10%。
作为全球人口和计算设备保有量的大国,我国每年所能产生的数据量也极为庞大,有数据说2014年甚至可能达到ZB级别,但是真正被有效存储下来的 数据仅仅是其中极微少部分,中国保存下来数据占全球数据的比例大约在10%左右,也就是上面说的5EB。这些数据中,目前已被标记并用于分析的数据仅 达到500PB左右,也是接近10%的一个比例。
伴随着云计算迅速普及和各行业,各企业和部门对于数据资产保存和利用意识的增强,以及通过互联网、大数据对产业进行变革的意愿,未来2-3年一 定会有越来越多的行业、大企业步入到PB、百PB、甚至EB级别数据俱乐部,未来3-3年中国的数据总量也将呈翻倍上升态势,我们预测2015年中国就可能 突破10EB数据保有量,被标签和分析利用数据量也将上升到EB级别,这些数据增长中互联网、政务、医疗、教育、安全等行业和领域所做贡献最大,而相 对传统的物流、生产制造、甚至农业等领域数据拥有量的增长将更加明显。

2019年中国金融科技行业市场现状及发展前景分析 未来十大发展趋势分析

2019年中国金融科技行业发展概况分析

《经济参考报》3月26日刊发题为《机构加速抢滩布局金融科技》的报道。文章称,随着金融与科技的深度融合,金融科技正跃上新风口。一方面,银行等传统金融机构不断加注金融科技砝码。邮储银行、农业银行等多家金融机构近日召开了金融科技专场校园招聘,2019年将在金融科技领域加大研发投入。另一方面,互联网系的金融科技公司快速崛起,腾讯、360金融、乐信等多家巨头近日发布的业绩报告显示,2018年金融科技收入增长迅猛,其中360金融2018年净收入同比增长464%。同时,传统金融机构与科技公司的“跨界合作”也愈加紧密,金融科技发展生态正在形成。

业内专家表示,金融科技的发展将提高金融运行效率,为民企融资、金融防风险带来新的环境,但同时也为金融监管带来了新的挑战。根据监管层近期密集释放的信号,金融科技将获更大力度政策支持,金融科技监管也将同步趋严。

未来中国金融科技营收规模将接近2万亿

前瞻产业研究院发布的《中国科技金融服务深度调研与投资战略规划分析报告》统计数据显示,2013年中国金融科技营收规模仅仅达6951亿元。之后呈现高速增长状态,2016年以来,我国互联网金融正逐渐从用户流量驱动向金融科技驱动转型。虽然目前我国金融科技仍处于发展初期,但是我国尚未成熟的金融市场给予了金融科技快速发展的土壤。截止至2017年我国金融科技企业的营收总规模达到6541亿元左右,同比增速552%。根据前瞻产业研究院测算:2018年,我国金融科技企业的营收总规模达到96988亿元,同比增速483%。前瞻认为,目前金融科技服务于金融机构,更偏向实际金融业务的后端,并不是金融产业链中利润最丰厚的一环,因此短时间内金融科技营收规模很难迎来爆发式增长,或将继续保持这样的增速稳定增长。并预测在2020年中国金融科技营收规模将达197049亿元。

2013-2020年中国金融科技营收规模统计及增长情况预测

数据来源:前瞻产业研究院整理

未来中国金融科技十大发展趋势分析

云计算、大数据、人工智能和区块链等新兴技术与金融业务不断融合,科技对于金融的作用被不断强化,在政策的大力支持下,金融机构、科技企业对金融科技的投入力度持续加大,数据价值持续不断的体现并释放出来,金融业务环节的应用场景更加丰富,金融解决方案创新推陈出新。开发银行、无人银行、资产证券化、数字票据、不良资产处置等方面业务在科技的赋能下由概念逐步变为现实,随着第五代移动通信技术(5G)、量子计算等前沿技术由概念阶段到实际应用,金融作为最先拥抱技术的领域,也会摩擦出新的火花。未来,金融科技发展趋势体现在十个方面:

1、开放银行

开放银行是银行通过开放应用编程接口(API)对外开放服务。即指银行把自己的金融服务,通过开放平台(OpenAPI)等技术方式开放给外部客户(企业或个人),客户可以通过调用API来使用银行的服务,而不需要直接面向银行。银行通过API的开放开展跨界融合,实现银行与银行、银行与非银金融机构、银行与跨界企业间的数据共享与场景融合,极大拓展了银行服务的生态。

开放银行成为近年来国内外银行转型的新浪潮。“开放银行”概念起源于英国,2018年1月英国9家银行共享数据,首次落地开放银行理念。2018年7月,浦发银行在北京率先发布“APIBank”无界开放银行,标志着国内“开放银行”的首家落地。随后,工商银行、建设银行、招商银行、兴业银行、光大银行等纷纷展开探索,通过开放API,
实现金融和生活场景的链接。

以API
Bank为代表的开放银行40时代即将到来。未来,银行的商业模式将从B2C变为B2B2C,服务标准也将从标准NPS升级为整合型NPS。随着金融服务嵌入生活与生产的方方面面,“场景在前,金融在后”的跨界生态圈将成为主流。虽然目前开放银行应用仍处于早期阶段,但未来,银行的账户功能、支付功能、理财产品、贷款产品等将势必形成标准化的API集中输出,成为打通跨界生态的接口。

2、无人银行

无人银行是指通过科技手段减免传统银行的人力使用。通过运用生物识别、语音识别、数据挖掘、人工智能、VR、AR、全息投影等科技手段,替代传统银行的柜员、大堂经理、引导员等岗位,为客户提供全自助式的智能银行服务。

银行人力减少是目前大势所趋。目前大部分银行都实现了人力的部分替代,少数银行试点几乎实现了厅店全替代。至2018年5月28日,我国银行物理网点共退出4591家,从2017年下半年开始银行退出网点数目同比增速平均是55%。截至2018年6月底,四大行员工数与2017年底相比,减少已超过32万人。

短期内无人银行将仍处在试点阶段。目前建设银行已经开启了无人银行试点,通过更高效率的智能柜员机替代柜员、保安、大堂经理,刷脸刷身份z替代人工验证的方式,覆盖90%以上现金及非现金业务。尽管无人银行为银行网点转型打开探索新路径,但目前银行业务还难以实现百分之百无人化,例如需要安排保安值班;客户在智能终端上开卡、汇款时,出于安全风险考虑,也会安排工作人员现场服务。因此未来的一段时间内,无人银行仍将作为探索性的试点存在。

3、量子计算与金融

量子计算是一种遵循量子力学规律的新型计算模式。普通计算机使用比特(bit) 中0与1的两种状态存储数据,而量子计算机的存储单位量子比特,除0和1外,
同时还可以实现多个状态的相干叠加态。 所以,
基于量子计算的量子计算机就可以通过控制原子或小分子的状态,记录和运算信息,其存储和运算速度都能远远超越传统通用计算机。例如使用超级计算机分解一个400位的数字,需要60万年,而用量子计算机只需要几小时甚至几十分钟。

量子计算的应用能极大提升金融服务效率。量子计算由于其超强大的计算能力,可应用于在金融业多个方面。例如金融高频交易,利用算法根据预先设定好的交易策略自动执行股票交易,在达到相同结果的前提下,量子计算比传统计算机的速度要快得多。再比如诈骗检测,利用量子计算机的快速学习的特点,能大大加速神经网络学习速度,迅速打击新兴的诈骗方式。

量子计算也可能会为金融业带来巨大风险。量子计算在计算速度上的飞跃式提升,也可能会对现有金融体系带来威胁。例如目前正在使用的许多公钥密码系统,在量子计算极大的计算性能下,很有可能会遭到破解,这些将严重影响互联网及各地数字通信的保密性和完整性,对现有的安全系统和管理机制造成大范围和系统性的破坏。因此,在量子计算机瓦解当前密码体系并实现商业化之前,必须建立量子安全解决方案形成安全的过渡。

4、5G与金融

5G是第五代移动通信技术,是4G之后的延伸。5G概念由标志性能力指标“Gbps用户体验速率”和一组关键技术组成。5G技术创新主要来源于无线技术和网络技术两方面。在无线技术领域,大规模天线阵列、超密集组网、新型多址和全频谱接入等技术已成为业界关注的焦点;在网络技术领域,基于软件定义网络(SDN)和网络功能虚拟化(NFV)的新型网络架构已取得广泛共识。

5G将进一步优化金融服务,实现金融场景的再造,为金融行业注入新的生机。5G技术的热点高容量场景,将为用户提供极高的数据传输速率,满足网络极高的流量密度需求,该技术场景将有效提升移动端金融服务的速率,减少因网络延迟造成的支付卡顿等情况,同时速率的提升也有助于通过AR/VR技术进一步丰富支付模式,提供更加真实的场景体验;5G技术的连续广域覆盖场景还可有助于银行无人网点的部署,通过AR/VR技术将金融服务带到此前网点无法覆盖的偏远地区,实现普惠金融服务。此外,5G面向物联网业务的低功耗大连接和低时延高可靠场景还将通过实现万物互联,获取海量、多维度、相关联的人、物、企业数据,进一步优化供应链金融、信用评估、资产管理等相关金融服务,实现更多丰富场景的探索。

5G及相关产业的发展带来广阔投资空间,引发金融高度关注。5G一方面提供更快的速率和更高的带宽,促进移动互联网进一步的蓬勃发展和人机交互新模式的创新,另一方面还将实现机器通信,千亿量级的设备将接入5G网络。5G还将与云计算、人工智能、AR/VR、无人驾驶等技术相结合在车联网、物联网、工业互联网、移动医疗、金融等领域带来更加丰富的应用场景,此外,5G网络还将是能力开放的网络,通过与行业的结合,运营商将构建以其为核心的开放业务生态,拓展新的业务收入模式,目前中国移动已经联合战略伙伴打造了百亿级规模的5G投资基金,国内外险资、券商、阳光私募、风投等众多机构,也早在2017年成立了数十支5G产业专项投资基金,未来5G及相关产业将持续引发金融高度关注。

5、移动金融安全

移动金融指的是使用移动智能终端及无线互联技术处理金融企业内部管理及对外产品服务的解决方案的总称,移动金融安全指的是移动金融业务开展过程中的安全。当前移动智能终端的普及加速了金融信息化建设,越来越多的金融服务向移动化逐步转型。移动金融丰富了金融服务的渠道,为金融产品和服务模式的创新、普惠金融的发展提供了有效途径。央行印发《关于推动移动金融技术创新健康发展的指导意见》将“安全可控”作为移动金融的健康发展的重要原则之一,强调了移动金融安全的对于移动金融技术创新发展的保驾护航的地位。

移动金融在创新与安全的博弈中发展,安全问题愈发引起重视。随着金融产业的发展,金融行业移动应用日渐成为金融服务及产品的重要支撑手段,移动金融未来将继续在规模和创新上发展。金融科技快速发展给移动金融带来了无限生机,但同时也滋生了诸多风险。移动金融应用中频发木马病毒、支付安全、敏感信息泄露、身份认证绕过、仿冒等安全问题,引发了监管部门乃至社会的广泛关注,移动金融安全成为金融创新发展中至关重要的保障。

个人信息安全是移动金融安全的重中之重。近年来,移动互联网应用程序(APP)越界获取用户隐私权限、超范围收集个人信息的现象频发。移动金融应用中隐私窃取类恶意应用占比最高,用户个人信息受到极大威胁。为保障个人信息安全,维护网民合法权益,中央网信办、工业和信息化部、公安部、市场监管总局开展“App违法违规收集使用个人信息专项治理”,加强个人信息保护,推动移动信息安全建设。

生物特征识别兼顾安全与便捷,成为移动金融安全关注的热点。目前,生物特征识别技术已经基本成为移动智能终端的标准配置,逐渐成为了金融业务中新型用户身份核实和认证的发展方向。中国人民银行于2018年10月颁布金融行业首个生物识别技术标准《移动金融基于声纹识别的安全应用技术规范》,将安全性和个人隐私保护摆到了突出位置,规范如声纹等生物特征识别的安全应用。

6、数字票据

数字票据是一种将区块链技术与电子票据进行融合,实现自动安全交易的新型票据。数字票据借助区块链具有分布式账本、去中心化、集体维护、信息不可篡改等特点,使数字票据更具安全性和信息公开性,更加智能交易,更加便捷使用。

数字票据可以实现全程高效真实的信息传递,全程自动化交易,以及交易过程全程追踪,提高用户隐私保护。区块链具有点对点传输,采用去中心化的信任机制的优势,保证数字票据的数据安全性、完整性和不可篡改性。数字票据利用区块链提供可编程的智能合约,实现票据的自动抵押、清付和偿还,避免交易风险。并且,所有交易都被记录在完整的“时间链”上,一旦有违约行为发生,可以追溯其责任,并且通过隐私保护算法保护参与者隐私,可实现参与者在区块链上的匿名性。

上海票据交易所数字票据实验性生产系统成功上线,工行中行浦发等银行参与其中。数字票据交易平台实验性生产系统已在2018年1月25日成功上线试运行,工商银行、中国银行、浦发银行和杭州银行在数字票据交易平台实验性生产系统顺利完成基于区块链技术的数字票据签发、承兑、贴现和转贴现业务。数字票据交易平台实验性生产系统结合区块链技术和票据业务实际情况,对前期数字票据交易平台原型系统进行了全方位的改造和完善,使结算方式更加创新,业务功能更加完善,系统性能不断提高,安全防护不断加强,隐私保护更加优化,实现实时监控管理。

7、数字资产证券化

数字资产证券化是将数字资产转化为证券的过程。将域名、商标、品牌、数字货币、游戏装备、账户号码等相关缺乏市场流动性的数字资产,转换为在金融市场上可以自由买卖的证券的行为。

数字资产证券化目的在于获取融资,以最大化提高资产的流动性。数字资产是文化产业的创新蓝海,是互联网+文化产业的新业态,是“文化互联网+”的文化大产业下的商业模式创新。域名、商标等数字资产缺乏市场流动性,通过数字资产证券化,有效打破刚性兑付,有效盘活巨大的金融资产和社会的存量资产,能把缺乏流动性但有收益性的数字资产设计成证券化产品卖出去,收回现金,提高流动性,进而获得融资。

数字资产证券化是区块链的最佳实践场景。我国央行货币研究所也在不断探索数字资产证券化区块链平台,借助区块链的分布式数据储存、去中心化的特点,保证了以及底层数字资产数据真实性,且不可纂改,降低了信息不对称性,增强了信息的透明及可靠程度,有效解决了机构间费时费力的对账清算问题,降低数字资产的融资成本,提高融资效率。

8、消费金融

消费金融是为满足消费者具体消费需求的现代金融服务方式。是金融机构向消费者提供用于购买装修、旅游、电子产品、教育、婚庆等具体的消费需求的个人消费贷款服务。除银行提供的贷款服务外,接触较多的消费金融服务有京东金融的“京东白条”、蚂蚁金服的“花呗”、苏宁的“任性付”等以及被大众接受的P2P小额理财服务。根据银监会发布的《消费金融公司试点管理办法》中定义,消费贷款是指消费金融公司向借款人发放的以消费(不包括购买房屋和汽车)为目的的贷款。

未来中国消费金融行业迎来巨大发展空间。2018
年,国家出台了多项鼓励消费金融发展的政策。特别提到“加快消费信贷管理模式和产品创新、不断提升消费金融服务的质量和效率。“作为消费主体的80、90后,更愿意通过借贷的方式满足产品购买需求。同时,随着消费金融规模的不断扩大,消费金融会向二三线城市下沉,各类金融应用场景需求增多。

金融科技助力消费金融产品创新和风控体系建设。目前,
我国消费金融存在监管机制有待完善、企业产品创新不足、风险防控体系不健全等问题。金融科技的发展为消费金融开发更多的产品应用场景,提升消费者体验,激活和拓展市场空间;同时,利用金融科技建立构建完善的风控运营体系,解决消费金融面临的征信记录缺失、运营经验缺乏,降本增效。在科技的驱动下,消费金融将不断提升风险防控能力,不断提升运营能力与科技创新能力,科技驱动下的产品创新和风控体系的建立将为消费金融迎来更大的发展空间。

9、智能客服

智能客服可以显著提高金融服务效率。智能客服系统是利用机器学习、语音识别和自然语言处理等人工智能技术,处理金融客户服务中重复率高、难度较低且对服务效率要求较高的事务,如服务引导、业务查询、业务办理以及客户投诉等业务。目前应用的智能客服场景有智能客服机器人、智能语音导航、智能营销催收机器人、智能辅助和智能质检等。

金融机构及互联网企业都在加大智能客服的探索和应用。金融机构在线上线下对智能客服系统应用广泛,网站、App客户端等线上智能客服服务系统能够实现自动理解客户问题并进行解答和办理简单业务。在线下网点的智能化进程加速,逐步推广无人银行,智能机器人、智慧柜员机、VTM机、外汇兑换机等大量智能自主终端,大幅减少人工服务成本,使客户获得更满意和周到的服务体验。同时,互联网企业在智能机器人方面的研发投入力度不断加大,为这些金融客户提供个性化的智能客户服务。

智能客服系统逐渐渗透到金融业务的售前、售中、售后全流程。目前,智能客服系统已经能够代替人工客服为客户解决许多简单、重复的问题,为金融机构节约了大量的人工成本。随着社会的发展,客户对服务的及时性、移动性、多渠道性提出更多的要求,智能客服的应用为金融机构留住更多客户,提供全天候及时、便捷的服务,增强客户粘性。在智能客服的应用过程中,大量用户数据通过智能客服积累和沉淀下来,为精准营销和业务流程优化提供参考。同时,智能客服系统利用大量完备的用户数据,逐渐承担起更多售前、售中、售后全流程的金融业务。

10、不良资产处置的科技运用

科技带来不良资产处置方式创新发展。不良资产可分为股权类资产、债券类资产和实物类资产。不良资产处置有破产清算、拍卖、招标、协议转让、折扣变现,以及债转股、债务重组、资产证券化、资产重组、实物资产出租、实物资产投资等方式。近年来,随着云计算、大数据、人工智能、区块链技术的发展应用,出现了以互联网为基础的创新处置模式,如不良资产综合处置平台,众筹投资、撮合催收等。

经济新常态背景下对不良资产处置任务艰巨。不良资产率的持续攀升,政府鼓励不良资产处置的市场化。据银保监会称,2018年中国商业银行的不良贷款率为189%,为10年新高,截至12月底,商业银行不良贷款总额为2万亿元。
在经济新常态下,风险和各种不确定因素增多,对不良资产处置的效率和处置效益提出更高的要求。近年来,银行机构、资产管理公司等纷纷与互联网企业合作,通过网络平台模式进行不良资产的拍卖,涉及股权、债权和各种实物抵押物,取得良好效果。

金融科技已经在多个环节开发实际应用场景。科技运用可以快速发现资产价值,减少错配情况的发生,同时,可以显著提高信息互通,提升效率,提高不良资产处置回收率。目前金融科技已经在多个环节开发应用场景。如在运用自然语言处理和机器学习技术优化催收策略,同时,实现催收业务流程自动化,缩短处置的时间周期;通过大数据分析实现信用风险的精准定价;区块链分布式记账解决信用机制、信息不对称等问题,优化不良资产证券化流程,缩短处置周期,保证信息的真实有效性。


随着科学技术的发展,人们已一只脚迈进了智能 社会 的门槛,大量智能电子产品随处可见。随着 社会 智能化的发展,芯片的地位越来越重要,已成为手机、电脑、智能 汽车 。航天、物联网等行业发展的基础。

众所周知,我国进入半导体行业较晚,技术积累薄弱,国内企业在发展的过程中,太过于注重品牌知名度的提升,将大部分精力投入到了轻资产行业的发展,忽视了重资产行业的重要性,再者就是西方国家为了限制我国 科技 的崛起,早在几十年前就签订了《瓦森堡协定》,禁止向我国出口高尖端技术。受多种因素的影响,国内企业发展所需的芯片大部分从西方国家进口。

芯片过于依赖进口,对我国 科技 的发展而言真的不是一件好事,华为的遭遇就是很好的证明!

2020年5月,美国为了绞杀华为,突然修改世界半导体行业规则,禁止全球使用美国技术超过10%的半导体企业与华为合作,直接引发了华为的芯片危机,业务发展受到了很大的影响,如手机业务,已从世界第一大手机厂商的宝座跌落,今年第一季度国内市场份额从44%暴跌至16%,海外市场份额从去年的189%跌落至4%。

美国之所以欲将华为置之死地而后快,并不全是因为华为在5G通信领域打破了高通等美企的垄断,成为通信领域新的领头羊,主要是因为华为强大的研发能力!

据公开资料显示,华为凭借着58990项专利,成为了世界上拥有专利最多的 科技 公司。除此之外,不但在通信、手机领域取得了不凡的成就,其在芯片、自动驾驶、 *** 作系统、存储、人工智能、云计算等领域都达到了世界顶级的水准。

华为凭借一己之力,与高通、苹果、谷歌等美国多家行业老牌巨头斗得不亦乐乎,让世界各国重新认识了中国 科技 的力量与魅力,如此强大的华为,怎么可能不引起一向自以为是的美国的恐慌?为了不影响自己主导全球的计划,美国怎么可能让其继续发展下去?

2019年5月,美国以莫须有的罪名将华为列入“实体清单”,禁止美企与之合作。美国集全国之力、集盟友之力对华为长达一年的打压,不但没有将其打倒,反而让他变得更加强大。这一情况的出现,让美国很是恐慌,不得不使出杀手锏,芯片封锁!

美国的芯片封锁,让华为迎来了有史以来最大的生存危机,也让我们意识到, 在当今这个时代,要想摆脱被人鱼肉的命运,就必须实现技术独立,实现芯片的国产化,彻底打破封锁!

当前主流的芯片是硅基芯片,是从一堆堆沙子中提取中纯度高达99999%的硅晶圆,然后再经过设计、光刻、蚀刻、封装、测试等一系列复杂的流程,最终才能被应用在电子产品上。

在芯片制造全部工序中,光刻是我国芯片制造的短板,究其原因就是EUV光刻机被卡了脖子,而国产的光刻机仅达到了28nm级别。

或许有的人会说,几十年前,我国原子d都能造出来,现在造一个EUV光刻机有什么难的?事实上,我们短时间内还真的造不出来EUV光刻机,尽管中科院、清华大学等科研机构突破了很多EUV技术。

EUV光刻机不仅需要大量非常高尖端技术,还需要大量的元器件。 据ASML公司EUV光刻机总工程师透露,制造EUV光刻机所需的元器件超过10万件,来自世界上36个国家的1500多家企业,每一件都代表着业内的最高水平。值得一提的是,在ASML公司制造的EUV光刻机中,没有一件核心元器件来自我国企业。 由此可见,要想独自制造出EUV光刻机,我们将要克服多少困难。简单点说,我们要想独自制造出EUV光刻机,就必须将我们的基础工业水平达到西方国家基础工业水平的总和。

所以,我们要想短时间内打破芯片封锁,解决芯片被卡脖子的问题,我们必须另辟蹊径。所幸的是,中科院院士已经找到了这个“捷径”!

前不久,中科院院士、中科大教授郭光灿领导的科研团队在光量子芯片方面取得重大突破,成功掌握量子干涉核心问题的技术,这一重大技术突破,直接奠定了光量子芯片研制的技术基础。 中国院士团队的这一重大技术突破,让世界上唯一的超级 科技 强国美国震惊不已: 没想到中国科研人员会在这么短的时间内掌握光量子芯片技术。

要知道,我国是属于芯片行业起步较晚的国家,技术和人才储备都很薄弱,我们要想实现在光量子芯片领域的领先,付出的汗水将是发达国家科研人员的几百倍!

对于中科院院士团队在光量子芯片领域实现的重大技术突破,不少业内人士纷纷发表自己的看法: 一旦光量子芯片实现大规模量产,芯片的成本要比现在的芯片要低,而且中国也将会掌握芯片领域的主导权,华为的“芯”病也将会得到彻底根治!

不少网友心中看到这心中会有个疑惑,我快把光量子芯片吹上天了,那么,它到底是个啥东西呢?又具有什么特殊的能力呢?

所谓的光量子芯片, 就是用光子代替传统芯片的电子,通过光源能量和形状控制手段,将光投射线路经过光学补差,将设计好的线路图映射到晶片上。

芯片整体性能是否先进,与晶片上集成的晶体管数量有关,要想芯片性能更先进,就必须在固定大小的晶片上尽可能的集成更多的晶体管。

光量子芯片与传统硅芯片相比,其采用微纳米加工工艺、以光为载体,其数据传输能力更强、更稳定,而且信息储存的时间也会更久等等。

随着5G时代的到来,我们即将从互联网时代迈入物联网时代,我们对数据处理的速度的要求也会更高,传统芯片很可能无法满足我们这方面的需求,所以,更为先进的光量子芯片成为了我们在物联网时代的不二选择。

对于光量子芯片的发明,不少业内人士认为,其重要性不亚于计算机的发明,谁率先掌握了这种技术,谁就可以领跑一个新的时代!

笔者坚信,随着我国科研人员的不断付出,我们必将能在短时间内攻克光量子芯片所有技术难关,实现大规模量产,打破美国的芯片封锁,成为新时代的领跑者!


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13055685.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-30
下一篇 2023-05-30

发表评论

登录后才能评论

评论列表(0条)

保存