袁闻骞:大数据时代 物联网与智能制造有何关系

袁闻骞:大数据时代 物联网与智能制造有何关系,第1张

在中国制造千人会上,百度物联网拓展总监袁闻骞就结合物联网谈及了智能制造环境下的人机料法环所需要做出的改变。他表示:“其实互联网解决人的问题已经基本上非常成熟了,基于互联网的思维我们去看物联网,再去看智能制造,去解决我们在智能制造中所面临的数据问题。”

 大数据泛指巨量的数据集,因可从中挖掘出有价值的信息而受到重视。《华尔街日报》将大数据时代、智能化生产和无线网络革命称为引领未来繁荣的三大技术变革。麦肯锡公司的报告指出数据是一种生产资料,大数据是下一个创新、竞争、生产力提高的前沿。世界经济论坛的报告认定大数据为新财富,价值堪比石油。因此,发达国家纷纷将开发利用大数据作为夺取新一轮竞争制高点的重要抓手。
大数据时代的来临
互联网特别是移动互联网的发展,加快了信息化向社会经济各方面、大众日常生活的渗透。有资料显示,1998年全球网民平均每月使用流量是1MB(兆字节),2000年是10MB,2003年是100MB,2008年是1GB(1GB等于1024MB),2014年将是10GB。全网流量累计达到1EB(即10亿GB或1000PB)的时间在2001年是一年,在2004年是一个月,在2007年是一周,而2013年仅需一天,即一天产生的信息量可刻满188亿张DVD光盘。我国网民数居世界之首,每天产生的数据量也位于世界前列。淘宝网站每天有超过数千万笔交易,单日数据产生量超过50TB(1TB等于1000GB),存储量40PB(1PB等于1000TB)。百度公司目前数据总量接近1000PB,存储网页数量接近1万亿页,每天大约要处理60亿次搜索请求,几十PB数据。一个8Mbps(兆比特每秒)的摄像头一小时能产生36GB数据,一个城市若安装几十万个交通和安防摄像头,每月产生的数据量将达几十PB。医院也是数据产生集中的地方。现在,一个病人的CT影像数据量达几十GB,而全国每年门诊人数以数十亿计,并且他们的信息需要长时间保存。总之,大数据存在于各行各业,一个大数据时代正在到来。
信息爆炸不自今日起,但近年来人们更加感受到大数据的来势迅猛。一方面,网民数量不断增加,另一方面,以物联网和家电为代表的联网设备数量增长更快。2007年全球有5亿个设备联网,人均01个;2013年全球将有500亿个设备联网,人均70个。随着宽带化的发展,人均网络接入带宽和流量也迅速提升。全球新产生数据年增40%,即信息总量每两年就可以翻番,这一趋势还将持续。目前,单一数据集容量超过几十TB甚至数PB已不罕见,其规模大到无法在容许的时间内用常规软件工具对其内容进行抓取、管理和处理。
数据规模越大,处理的难度也越大,但对其进行挖掘可能得到的价值更大,这就是大数据热的原因。首先,大数据反映舆情和民意。网民在网上产生的海量数据,记录着他们的思想、行为乃至情感,这是信息时代现实社会与网络空间深度融合的产物,蕴含着丰富的内涵和很多规律性信息。根据中国互联网络信息中心统计,2012年底我国网民数为564亿,手机网民为42亿,通过分析相关数据,可以了解大众需求、诉求和意见。其次,企业和政府的信息系统每天源源不断产生大量数据。根据赛门铁克公司的调研报告,全球企业的信息存储总量已达22ZB(1ZB等于1000EB),年增67%。医院、学校和银行等也都会收集和存储大量信息。政府可以部署传感器等感知单元,收集环境和社会管理所需的信息。2011年,英国《自然》杂志曾出版专刊指出,倘若能够更有效地组织和使用大数据,人类将得到更多的机会发挥科学技术对社会发展的巨大推动作用。
大数据应用的领域
大数据技术可运用到各行各业。宏观经济方面,IBM日本公司建立经济指标预测系统,从互联网新闻中搜索影响制造业的480项经济数据,计算采购经理人指数的预测值。印第安纳大学利用谷歌公司提供的心情分析工具,从近千万条网民留言中归纳出六种心情,进而对道琼斯工业指数的变化进行预测,准确率达到87%。制造业方面,华尔街对冲基金依据购物网站的顾客评论,分析企业产品销售状况;一些企业利用大数据分析实现对采购和合理库存量的管理,通过分析网上数据了解客户需求、掌握市场动向。有资料显示,全球零售商因盲目进货导致的销售损失每年达1000亿美元,这方面的数据分析大有作为。
在农业领域,硅谷有个气候公司,从美国气象局等数据库中获得几十年的天气数据,将各地降雨、气温、土壤状况与历年农作物产量的相关度做成精密图表,预测农场来年产量,向农户出售个性化保险。在商业领域,沃尔玛公司通过分析销售数据,了解顾客购物习惯,得出适合搭配在一起出售的商品,还可从中细分顾客群体,提供个性化服务。在金融领域,华尔街“德温特资本市场”公司分析34亿微博账户留言,判断民众情绪,依据人们高兴时买股票、焦虑时抛售股票的规律,决定公司股票的买入或卖出。阿里公司根据在淘宝网上中小企业的交易状况筛选出财务健康和讲究诚信的企业,对他们发放无需担保的贷款。目前已放贷300多亿元,坏账率仅03%。
在医疗保健领域,“谷歌流感趋势”项目依据网民搜索内容分析全球范围内流感等病疫传播状况,与美国疾病控制和预防中心提供的报告对比,追踪疾病的精确率达到97%。社交网络为许多慢性病患者提供临床症状交流和诊治经验分享平台,医生借此可获得在医院通常得不到的临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。在社会安全管理领域,通过对手机数据的挖掘,可以分析实时动态的流动人口来源、出行,实时交通客流信息及拥堵情况。利用短信、微博、微信和搜索引擎,可以收集热点事件,挖掘舆情,还可以追踪造谣信息的源头。美国麻省理工学院通过对十万多人手机的通话、短信和空间位置等信息进行处理,提取人们行为的时空规律性,进行犯罪预测。在科学研究领域,基于密集数据分析的科学发现成为继实验科学、理论科学和计算科学之后的第四个范例,基于大数据分析的材料基因组学和合成生物学等正在兴起。
麦肯锡公司2011年报告推测,如果把大数据用于美国的医疗保健,一年产生潜在价值3000亿美元,用于欧洲的公共管理可获得年度潜在价值2500亿欧元;服务提供商利用个人位置数据可获得潜在的消费者年度盈余6000亿美元;利用大数据分析,零售商可增加运营利润60%,制造业设备装配成本会减少50%。
大数据技术的挑战和启示
目前,大数据技术的运用仍存在一些困难与挑战,体现在大数据挖掘的四个环节中。首先在数据收集方面。要对来自网络包括物联网和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。其次是数据存储。要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。第三是数据处理。有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。第四是结果的可视化呈现,使结果更直观以便于洞察。目前,尽管计算机智能化有了很大进步,但还只能针对小规模、有结构或类结构的数据进行分析,谈不上深层次的数据挖掘,现有的数据挖掘算法在不同行业中难以通用。
大数据技术的运用前景是十分光明的。当前,我国正处在全面建成小康社会征程中,工业化、信息化、城镇化、农业现代化任务很重,建设下一代信息基础设施,发展现代信息技术产业体系,健全信息安全保障体系,推进信息网络技术广泛运用,是实现四化同步发展的保证。大数据分析对我们深刻领会世情和国情,把握规律,实现科学发展,做出科学决策具有重要意义,我们必须重新认识数据的重要价值。
为了开发大数据这一金矿,我们要做的工作还很多。首先,大数据分析需要有大数据的技术与产品支持。发达国家一些信息技术(IT)企业已提前发力,通过加大开发力度和兼并等多种手段,努力向成为大数据解决方案提供商转型。国外一些企业打出免费承接大数据分析的招牌,既是为了练兵,也是为了获取情报。过分依赖国外的大数据分析技术与平台,难以回避信息泄密风险。有些日常生活信息看似无关紧要,其实从中也可摸到国家经济和社会脉搏。因此,我们需要有自主可控的大数据技术与产品。美国政府2012年3月发布《大数据研究与发展倡议》,这是继1993年宣布“信息高速公路”之后又一重大科技部署,联邦政府和一些部委已安排资金用于大数据开发。我们与发达国家有不少差距,更需要国家政策支持。
中国人口居世界首位,将会成为产生数据量最多的国家,但我们对数据保存不够重视,对存储数据的利用率也不高。此外,我国一些部门和机构拥有大量数据却不愿与其他部门共享,导致信息不完整或重复投资。政府应通过体制机制改革打破数据割据与封锁,应注重公开信息,应重视数据挖掘。美国联邦政府建立统一数据开放门户网站,为社会提供信息服务并鼓励挖掘与利用。例如,提供各地天气与航班延误的关系,推动航空公司提升正点率。
大数据的挖掘与利用应当有法可依。去年底全国人大通过的加强网络信息保护的决定是一个好的开始,当前要尽快制定“信息公开法”以适应大数据时代的到来。现在很多机构和企业拥有大量客户信息。应当既鼓励面向群体、服务社会的数据挖掘,又要防止侵犯个体隐私;既提倡数据共享,又要防止数据被滥用。此外,还需要界定数据挖掘、利用的权限和范围。大数据系统本身的安全性也是值得特别关注的,要注意技术安全性和管理制度安全性并重,防止信息被损坏、篡改、泄露或被窃,保护公民和国家的信息安全。
大数据时代呼唤创新型人才。盖特纳咨询公司预测大数据将为全球带来440万个IT新岗位和上千万个非IT岗位。麦肯锡公司预测美国到2018年需要深度数据分析人才44万—49万,缺口14万—19万人;需要既熟悉本单位需求又了解大数据技术与应用的管理者150万,这方面的人才缺口更大。中国是人才大国,但能理解与应用大数据的创新人才更是稀缺资源。
大数据是新一代信息技术的集中反映,是一个应用驱动性很强的服务领域,是具有无穷潜力的新兴产业领域;目前,其标准和产业格局尚未形成,这是我国实现跨越式发展的宝贵机会。我们要从战略上重视大数据的开发利用,将它作为转变经济增长方式的有效抓手,但要注意科学规划,切忌一哄而上。

物联网时代:物联网的十大应用领域(上)地址: 物联网时代:物联网的十大应用领域(上)

目录:

(上)

一、物联网应用概述

二、物联网应用领域划分

1智能物流

2智能交通

3智能家居

4环境监测

5金融与服务业

(下)

6智慧医疗

7智慧农业

8智慧工业

9智能电网

10国防军事

6智慧医疗

健康 对个人来说非常重要,但人生病是不可避免的,如何使人们少生病、生小病、生病后能及时诊断和治疗成为目前卫生领域的重大课题。

物联网在医疗卫生方面的广泛应用可以解决上述问题。目前可穿戴设备早已出现在市场上,他的出现可以使得人们及时了解自身如呼吸、心跳、血糖等一系列生理参数,这些参数可与正常生理参数相比对,为人们提供 健康 辅助信息与建议;同时这些参数可以上传到医疗信息中心,一来为个人建立一个实时的 健康 参数库,二来可以通过这些参数自动诊断 健康 状况,从而使人们达到少生病、生小病、生病后能及时诊断和医疗的目的。

目前,看病难困扰着整个卫生系统,其原因是医疗资源的分配不公。采用物联网技术可以解决医疗资源分配不公的问题。通过物联网采集的病理数据可远程传输给权威医疗机构,专家通过对这些数据的分析可诊断病情,提出医疗方案,在远端的病人可根据医疗方案,由当地医疗人员处置。这样就保障了优良医疗资源的高效应用。

目前有很多精确度很高的手术如一些神经外科手术都需要 *** 作专门的仪器来进行手术, *** 作便是传感层接收的信息,仪器内嵌入的系统根据接收的信息通过特定的程序执行特定的 *** 作。理论上来说,信息可以由仪器本身自带的传感器产生,也可由远程端发送来信息,这样一些难度极大的手术便可由专家通过远程 *** 作来完成。然而现实中由于手术需要的实时性与网络传输信息的延迟性,这一设想还无法实现。5G技术的出现让这一设想成为可能。

物联网的应用还可以减少排队就医的时间,病人可通过物联网终端以及病情的缓急来预约就诊时间,就诊后可用移动支付的手段减少付费的麻烦,附着在药品上的RFID标签可以极大地减少药品的误服率,保障了用药安全。

(值得一提的是,作者所在的团队的项目便是一个智能医疗的项目,是一个关于康复医学的项目,主要用来帮助骨折患者的恢复以及防止二次骨折的可能。)

7智慧农业

物联网在农业上的应用可以使得农业生产更加智慧。在农田里部署的无线传感器网络实时采集田地里的水、肥等与农作物生长有关的参数,及时控制农作物生长所需的各种环境使得农作物的品质更高。

物联网中的大数据分析与数据挖掘技术可以用来指导农户科学地生产、种植,从全局考虑种植与需求,以保证丰产丰收。

在养殖方面,RFID标签可植入动物体内,动物的全生长过程均存于监控之中,这样可以保障动物肉品的全方位可追溯,保障了食品的安全。

(如果有机会的话,我会写一篇一个基于物联网技术的大棚无人种植智能监控系统方案)

8智慧工业

物联网与工业的融合应用产生了智慧工业,工业从大规模的生产逐渐演变成了个性化生产。企业从供应链的角度出发,通过虚拟现实知道用户消费和订购,将用户的个性化需求通过物联网实时传送到企业的生产线上,通过工业的自动控制技术,在一个生产线上可生产不同的个性化的产品,从而提高了企业的竞争力。

物联网与3D打印技术的结合,使得工业生产“可见即可得”。通过各种感知技术将用户想象的个性化产品图形化,图形化的虚拟产品可通过3D打印变成实际产品,这样就加快了产品研发、生产的速度,更快速地响应用户需求,提高企业的效益。

9智能电网

智能电网来源于电力自动化,其目标是在保障电力系统可靠性的同时,以更加经济的方式合理调配电能,使得电力企业和用户获得满意的效益。

电能是由其它如水力、火力、核能等能源转化而成的,它是一个无法存储的能量,因此多发电会产生浪费,少发电则供电不足。采用物联网技术后,电力企业可以通过在每个用户的用电设备上部署传感器,实时获得其用电信息,将该用电信息传送给电力企业,企业就可以及时调整发电量,以保障用电需求。另外,企业也可根据这些信息以及感知到的其他与 社会 生活、生产有关的信息,估算出用电需求量,依据需求量可有计划地安排发电所需的煤、油等发电物料,以保障企业的经济效益。

此外,用户可根据自身经济状况,合理安排用电时间,在用电高峰期时,由于此时电价高,可减少用电,当在用电低谷时,由于电价较低,可加大用电量。采用物联网技术,电力企业和用户可以全面感知用电情况,准确获得用电的高峰和低谷信息,指导企业和用户,使双方均获得较好的经济收益。

10国防军事

物联网在国防军事上有着广泛的应用。全面的感知可获得战场上的全面情况,为合理部署战斗力量提供了保障。现代战争是一个精确打击的战争,感知了全面战场信息就获得了精确打击的对象,火力能有效地打击敌人,保护自己。全面感知还可以有效地调配战斗资源,合理分配各种轻、重及远程火力、战斗人员和后勤保障。

在国防军事上,通过各种地面、空中、海洋、空间感知设备获取全方位的信息,这些信息与武器互连,从而形成了强大的武装网络和战斗力,为我国的国防现代化做出了巨大的贡献。

#百粉# #百粉过千粉丝# #物联网# #计算机# #计算机知识科普#

物联网时代是通过射频识别、红外感应器、全球定位系统、激光扫描器、气体感应器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络时代。物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。因此,应用创新是物联网发展的核心,以用户体验为核心的创新20是物联网发展的灵魂。

物联网中如何使用大数据
在瞬息万变的世界中,组织很难赶上不断涌现的新概念。但人们需要区分哪些技术和概念是有用的,哪些只是一种炒作。在数据分析领域,正是大数据引发了这个时代的质疑。而如今,当这个概念日益清晰时,一个新的应用浪潮即将到来:人们需要了解在物联网中如何使用大数据。

关于什么是大数据及其可带来的价值的热烈讨论已经开始消退。然而,当专家们开始大量使用大数据和物联网的技术组合时,人们又再一次试图定义物联网与大数据连接的方式。
物联网与大数据的接触点
简而言之,物联网是连接到互联网的设备网络。这些设备具有内置的传感器,可以生成数据并对外发送,从而可以相互通信,并与分析系统进行通信。
即使对物联网设备仍然很陌生,这个概念已经在人们的生活中找到了方向。设想一个智能家庭,它可以通过调节供暖和空调系统的运行模式来调节温度,可以开启和关闭照明系统,可以发出有关漏水或气体泄漏或外人入侵的信号。最重要的是,智能家居可以在没有户主参与的情况下做到这一点。
物联网业务的一个典型例子是机器监控,使用安装在不同机器部件上的多个传感器。这些传感器将有关温度、振动、压力、润滑等读数发送给分析系统,分析系统对其进行处理并识别一些隐藏的模式和相关性。如果系统识别出读数与某种故障模式相匹配,则会向维护团队发送即时警报。
以下将回答物联网如何与大数据相交的棘手问题。当一些技术正在炒作时,物联网可能是其中之一。实际上,物联网数据是大数据的类型之一,这使得大数据技术堆栈在所有阶段处理物联网数据都是一个很好的(但不是唯一的)选项。对于数据摄取,企业可以使用Apache Kafka,因为该技术支持数据流。Apache Hadoop生态系统是数据存储和处理历史数据的理想选择,而Apache Spark则非常适合近实时数据处理。
大数据使用案例中的物联网数据规则
而人们开始了解制造商所提供的用例。同时,也可以在其他行业了解物联网数据,了解物联网大数据用例。
医疗保健:在医疗保健领域,配戴移动应用技术的可穿戴传感器设备可以实现远程健康监测。该方法的工作原理如下:传感器监测特定患者的状态(心跳、体温、血压、呼吸率等),并将这些数据实时传送到云端,然后传送到应用程序。分析系统不断搜索所有患者物联网数据中的隐藏趋势,并试图找出可能引发并发症的模式。如果物联网的大数据分析显示某些令人担忧的症状,系统会立即向患者和医生发送警报。
零售:知名零售商亚马逊公司最近推出了一个新概念 - Amazon Go。这是一家没有收银员的商店,顾客不必排队等待购物。要进入商店只用扫描他们的智能手机即可。事实上,在这里采用的是物联网和大数据分析技术:商店里遍布传感器和摄像头,顾客在商店中购物,摄像头能够区分其中的每一个人,并且跟踪他们放入购物车或返回货架的所有产品。重量传感器提供了一个额外的控制点:他们可以认识到特定的产品已经不在货架。当顾客完成购物时,他们选择的所有产品都显示在真实和虚拟的篮子中,顾客可以离开商店,系统将在稍后收费。
毫无疑问,Amazon Go是一个有远见的概念。然而,零售业表现出更多脚踏实地的想法,例如智能物流技术,可以跟踪和优化路线,并识别每位卡车司机的行为模式。零售商还使用信标激活访问者的应用程序,并在访问者进入商店并通过信标时,推出相关产品优惠和促销活动。访客会因此感到满意,因为他们收到参加促销活动提供的个性化优惠。同时,信标对商店员工也有帮助,因为它们可以识别需要高质量服务的具有价值的客户。
银行业:银行业也从物联网中受益。银行正在努力获取客户全方位的视角,并提供无缝的客户体验。虽然这一切始于智能手机的积极参与,但物联网进一步扩展至可穿戴设备。例如,美国银行与FitPay公司合作进一步推动可穿戴支付技术。通过这种合作,持卡人将能够直接从他们的智能手表和其他可穿戴设备付款。银行将能够识别客户的行为和偏好。
语结
尽管围绕物联网进行了更多的炒作,但它只是大数据源其中之一。毫无疑问,这是一个有价值的领域,而且正在不断发展。如果企业已经实施了一些大数据解决方案,也许已经处理物联网数据,如果企业正计划采用大数据方案,希望以上描述的用例可以激发一些伟大的想法。

NB-IOT是物联网设备的机遇,可实现大规模传感器的部署,MEMS工艺解决了传感器电源续航问题。物联网的行业应用已经全面启动了,初级应用已经在市政,工业,农业全面铺开,包括农业机械的作业状态和作业效果的监测,工业企业的设备状态监测,设备利用率指标的监测,农业养殖的环境监测,牲畜监测等等。我们公司针对物联网的软硬件研发已经5年,现在的初级应用在软硬件技术上已经不存在问题,mems工艺、嵌入式已经做到传感器的电源续航能力达到一年以上,室外无线检测应用不会被电源的问题制约。算法的改变使软硬件结合已经非常好,终端输出的已经不是单纯的图谱数据,直接是智能化的判断结果。有兴趣的朋友可以关注我,交流沟通。

物联网是智慧城市的基础,但智慧城市的范围比物联网更广。智慧城市的衡量指标由大数据体现,大数据推动智慧城市的发展;物联网是大数据产生的催化剂,大数据源于物联网的应用。物联网是指通过信息传感器、射频识别技术、全球定位系统、红外传感器、激光扫描仪等各种设备和技术,实时采集任何需要监控、连接和交互的物体或过程。收集声、光、热、电、力学、化学、生物、位置等各种需要的信息。通过各种可能的网络接入,实现物与人的无处不在的连接,实现对事物和过程的智能感知、识别和管理。物联网是基于互联网和传统电信网络的信息载体,它使所有可以独立寻址的普通物理对象形成一个互联网络。大数据技术是从各类超大规模数据中提取价值的低成本、快速收集、处理和分析技术的新一代技术和架构。大数据技术的不断出现和发展,让我们处理海量数据变得更容易、更便宜、更快捷,成为使用数据的好助手,甚至改变了很多行业的商业模式。大数据是这样一个数据集:数据量增长非常快,用常规的数据工具无法在一定时间内完成收集、处理、存储和计算。云计算是基于互联网的超级计算模式。在远程数据中心,数以千计的计算机和服务器连接成一个计算机云。所以云计算甚至可以让你体验到每秒10万亿次的计算能力。如此强大的计算能力,可以模拟核爆炸,预测气候变化和市场发展趋势。用户通过电脑、笔记本、手机等访问数据中心。,并根据自己的需要进行计算。云计算的就业前景在某种意义上也可以理解为云计算提供的服务,这是必然的,也就是说云计算对社会和云计算用户有什么优势,也可以理解为云计算的优势就是云计算的就业优势。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13060110.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-30
下一篇 2023-05-30

发表评论

登录后才能评论

评论列表(0条)

保存