1物联网主要应用领域
物联网的应用领域广泛,简单介绍几个应用场景:物流与仓储、健康与医疗、智能环境、社交智能交通、智能建筑、文物保护、古迹的实时监测、智能家居、定位导航、物流管理、视频监控、数字医疗等产业都有广泛的应用。
物联网应用范围
2 简单介绍几个应用例子
1)智慧城市
一般利用物联网、人工智能、云边计算、大数据挖掘分析、机器学习和深度学习等技术,还有运用三维可视化大数据平台、物联网云平台、移动终端以及各个智能硬件设备,实现城市物联感知、城市管理、城市服务等功能,提高政府监管服务、决策的智能化水平,形成高效、便捷、便民的新型管理模式,为城市构建智能型,管理型决策平台。
智慧城市下智慧园区
智慧城市主要应用功能包括智能交通系统、智慧能源系统、智慧物流及建筑服务系统、城市指挥中心、智慧医疗、城市公共安全、城市环境管理、政府公共服务平台等八个方面组成。
2)智能农业
智能农业基于物联网技术,通过各种无线传感器实时采集农业生产现场的光照、温度、湿度等参数及农产品生长状况等信息而进行远程监控生产环境。将采集的参数个信息进行数字化和转化后,实时传输网络进行汇总整合,利用农业专家智能系统进行定时、定量、定位云计算处理,及时精确的遥控指定农业设备自动开启或是关闭。
智能农业
3)智能交通
智能交通系统是将先进的电子传感技术、信息技术、数据通信传输技术、控制技术、计算技术以及物联网技术等有效地集成运用于整个交通管理的一个体系,建立起一种能在大范围、全方面发挥作用的,实时、准确、高效的综合交通管理系统。
车联网
3 个人经历
我之前是学习机械的,所以物联网相关知识都是自学的。本科毕业工作几年,发现工业物联网行业是未来的风口。就辞职考研了,研究生期间主要研究的是机电一体化与物联网控制。物联网涉及的知识面比较广,除了在工业方面,它是涵盖单片机、传感器、通信技术、云存储技术、数据可视化和数据挖掘等一系列学科。诸如:嵌入式技术、无线传感网络技术、传感器技术、M2M技术、云计算及中间件技术。我也构建一套智能家居系统。
AIoT(人工智能物联网)未来发展前景十分广阔。它将使用AI技术实现对设备、数据和应用的连接,从而为企业带来新的发展机遇。AIoT可以帮助企业实现效率的大幅度提升,同时也可以帮助企业减少成本开销。此外,AIoT还能够帮助企业针对不断变化的需要快速作出决定和行动。随着、物联网技术的发展,OT(物联网)正在成为未来化发展的重要方向。然而,OT在发展中还面临着一些困局,如安全问题、标准不统一等,这些问题需要行业大咖的共同破解。近日,在上海举行的2021年OT峰会上,来自全球各地的行业大咖共聚一堂,围绕OT的发展趋势、应用场景等问题展开深入探讨。他们认为,OT的发展虽然面临着困局,但也有着巨大的发展潜力。在安全问题方面,大咖们表示,要从技术和管理两个角度来解决。技术上,要用先进的加密技术和安全机制来保护数据的安全;管理上,要制定相应的安全管理制度和规范,确保数据的安全性和隐私性。在标准不统一问题上,大咖们认为,要加强国际间的交流合作,推动OT标准的制定和统一,以便更好地推动OT的发展。此外,大咖们还呼吁,要加强人才培养,招揽更多OT领域的专业人才,培养出更多的OT开发人才和技术人才,以便更好地推动OT的发展。总之,OT迎来了冰火两重天,但在行业大咖们的共同努力下,相信OT在未来会迎来更加美好的发展。物联网、大数据及人工智能都是近年来互联网行业比较火热的话题,三者之间具有非常紧密的联系。想探讨物联网、大数据及人工智能之间如何融合,首先需要了解其基本概念。
概念
1、物联网
根据百度百科的解释,物联网(InternetofThings,IoT)是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络(万物互联)。物联网网络架构设计由感知层、网络层及应用层组成,分别实现数据采集、数据传输及数据应用的功能。目前,物联网已经广泛应用于智慧医疗、智慧环保、智慧城市、智能家居及物流等领域。
2、大数据
大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据具有体量大(Volume)、及时性(Velocity)、多样性(Variety)、低价值密度(Value)及真实性(Veracity)的“5V”特性。
3、人工智能
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。目前,人工智能正在改变各行各业的传统模式,作为人工智能分支的机器学习/深度学习已经广泛用于自然语言处理(NLP)、计算机视觉(CV)、机器翻译及推荐系统等领域。
深度融合
物联网、大数据、人工智能三者之间相辅相成,可以形成一个闭环通路。物联网作为智能感知层,主要负责采集现场的数据并将数据上传至分布式数据库中;大数据作为数据存储层,将经过ETL处理后的数据保存到分布式文件系统(HDFS)或数据仓库(HIVE)中;人工智能作为应用层,可利用sparkml或tensorflow实现相关的机器学习或深度学习算法,对存储在HDFS或HIVE中的数据进行数据挖掘。
应用案例
目前,物联网、大数据、人工智能已经广泛用于智慧城市、智慧环保、智慧交通等领域。以智慧环保中的空气预警为例,首先,物联网可以作为智慧感知层,安装在客户现场的空气监测设备采集的空气质量信息通过网络传输数据中心;而后,利用大数据ETL工具(spark、hive)进行数据清洗并存储至分布式数据库/文件系统/数据仓库中;最后,利用人工智能相关技术进行大数据分析(sparkml、tensorflow),预测未来若干天的空气质量,并以此辅助进行科学决策及改善环境。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)