你期待人工智能时代真正的来临,来改变我们的生活吗? 关于人工智能,你所能想到什么呢?之前看电视的时候,有关人工智能的一些场景。就比如说,在医院,人工智能结合病人的各种检测数据,来判断病情,判断病人患各种疾病的一个概率,从而帮助医生更准确的能找到病灶部位,以及施展治病方案。
在现实生活中,目前我所看到的人工智能,无非就是某个餐厅减少几个服务人员,有一个机器人,端着菜盘转来转去,也能准确的找到就餐者的餐桌。
之前也了解到各种视频,通过各种文章,关于AI人工智能能给我们这个社会带来哪些变化?比如说自动驾驶,自动驾驶会发生车祸比例大大减少。还比说,人工智能的律师,这种律师可跟人不一样,它所记得的法律法规,比人厉害多了。再比方,人工智能的棋类高手,已经打败了世界冠军好几次。
还有些无人超市,商品就超市内,消费者直接拿走商品,商家会自动在消费者的账户中准确扣费。
现在,人工智能产业正迅速迎来全面发展,从芯片层、基础层、算法层、技术层到行业应用层,创新不断,在金融、安防、医疗、教育、传媒、企业服务等各领域全面开花。
未来呼啸而来,人工智能会给我们的生活带来翻天覆地的变化。本书就是告诉我们,人工智能是如何改变我们的生活,以及未来人工智能时代,我们该如何拥抱变化,面对第三次AI浪潮的机遇与挑战,我们该如何不被时代淘汰?在变革中抓住商机,实现蜕变。
一:当机器有了智慧
AI的核心是什么,人工智能的核心是机器进行理解、推理和学习。人工智能是拥有理解、推理、学习和互动能力的新一代信息系统。这个系统不断积累知识、学习和了解自然语言,与人类进行更加自然的互动。
人工智能距离我们越来越近。每一项科技的发展和进步都像硬币的两面,人类需要善用科技,让人工智能成为人类的朋友。而不是像《终结者》里面那样,机器已经失控,人无法掌控了。
要人工智能从行业场景落地上,从行业、技术、数据、人才、法规建设等多维度同步发展,围绕“行业+人工智能”建立自己的发展特色,真正让人工智能成为国家经济的驱动力和国际竞争砝码。
二,AI变革世界
世界在快速发生变化,新的技术变革对商业、社会的影响呈指数级增长,打破了人们过往的认知,也在颠覆企业的商业模式。一切坚固的传统,都烟消云散了。
第一,数据与人工智能具有强互动关系,人工智能革命的无名英雄是数据标注者。
第二,大数据和人工智能是同一价值链中的要素,无论大数据还是小数据,有价值的就是好数据。行业落地重要的是相关数据,而不是大而全的数据。
第三,人工智能的竞争,最终将是数据的竞争。
第四次工业革命已经拉开帷幕。这场革命以人工智能为核心驱动,将数字技术、物理技术、生物技术等学科融合在一起。其中迸发的强大力量,会更深刻地影响人类社会的基本运行方式。
人工智能革命,是思维力量的解放。
万物互联时代来临,物联网的核心同样是数据抓取,收集和传递数据,分析数据的价值,物联网的核心价值是通过大数据分析体现出来的。
物联网与人工智能的力量,不只是在一般意义上提高边际产出,其更大的意义在于数据真正成为一种生产要素,进入了生产函数,致使经济学上的“零边际成本”在更多场景下成为可能。
对未来的资本动向,风险投资注重财务回报,投资方向要聚焦在行业应用和落地上,特别是人工智能新开拓的场景;产业资本要着眼长远,主动拥抱人工智能,增强自身的技术与行业壁垒,适应智能时代的转型需求;国家资本和少数头部的人工智能公司,应多着力于人工智能基础层的构建,加大基础学科建设和人工智能人才培养力度,提升基础科研力量,建立产业集群,让中国的人工智能走得更远。
三:人工智能时代的全球行业变革
云计算改变了一切,它不仅改变了技术发展的频次和趋势,也触发了各行各业商业模式的变革。云计算把所有的技术以最低成本、最敏捷的方式,交付到每一个行业的使用者手上,根本性地撼动了人类社会的科技发展。
物联网和区块链属于体系化、架构型技术,物联网的核心是以遍布四周的传感器捕捉数据,获取数据资源,所谓万物互联,本质是万物的数据互联。区块链可以看成是一个共享的、不可变的分类账,用于记录交易、跟踪资产和建立信任、它的去中心化性质促进信息之间的信任和透明度。
人工智能的发展也正从“电动机”进入“生产线”利用的阶段。人工智能正在与行业应用深度融合,基于数据重新配置生产力和生产关系,找到颠覆性的商业模式,带来巨大的行业变革。
大数据分析和人工智能无疑是这个时代最主要的科技变革之一。数据作为21世纪新的自然资源,蕴藏着巨大的商业价值,企业可以通过数据分析、机器学习等洞察变化,帮助企业决策未来。
云计算、大数据分析、移动、社交、安全、物联网、区块链这些突破性的技术,为产业带来创新或颠覆。
四:企业如何抓紧AI红利
可以预见的是,未来每个企业都会变成数据公司。在人工智能时代,企业家必须重新认识数据的价值,建立清晰的数据战略。大数据时代,机会不局限在平台型的巨头企业,而属于每一个勇敢的革新者。
对于绝大部分企业而言,算法和算力不是壁垒,这些能力会由专业的基础设施运营商提供,企业只要自己拥有数据资源,就可以调用算法和算力服务便捷地使用人工智能,实现产业的智能化发展。
企业可以通过大范围利用自有数据、与外部交易数据、提供数据APl服务三大类方式来进行数据的价值创造。
产品、资产数字化的自有数据创新,企业自有数据往往可以不断积累,形成网络效应,是数据价值创造的首选。自有数据创新的一大方式是增强自有产品的数据生成能力,打造产品数据的创新能力。
整体来看,数据治理的实施有四个层次:第一个层次是从业务战略的高度来思考数据战略。第二个层次是在此基础上建立数据战略和数据安全原则。第三个层次是建立具体的治理原则、治理义务和治理方法。第四个层次是从技术、数据分类、组织管理等方面来保障数据治理的实施。
成功的数据战略应该包含数据资产、数据治理、数据价值创造、人才储备等在内的总体计划,为未来的业务增长奠定基础,提供持续不断的数据动力。
围绕着业务目标与流程,企业需要重构自身的组织架构。在重构时,企业要提出明确的组织目标、组织价值观及组织流程,最终搭建起准确、高效协同的组织结构。
人工智能的实践应该由业务与技术共同评估、共同决策、共同领导。人工智能最终要落地产业,懂行业、了解行业是核心。
人工智能发展的过程中,企业还需要在审核、伦理、监督、风险等方面制定相应策略,建立安全方面的运营机制来保障公司人工智能战略安全落地。
人工智能技术就是未来全球化竞争的顺风车,不管你是否相信,人工智能技术的发展对企业变革速度的影响已经超过我们的估量。
五:下一个20年,AI走向何方?
未来人工智能如何发展,取决于当下我们如何行动。在这一波人工智能产业浪潮中,人工智能要想得到好的发展、友善的发展,就绕不开伦理和数据隐私的讨论。只有伦理和数据隐私做好了,人工智能才能发展得更好。好的伦理和隐私保护规则能够促进人工智能的发展,让人工智能成为人类能力的延伸,与人类更好地融合。
人工智能技术是人类能力的延伸,可以放大人的智能水平和行为边界,如果不套上“伦理项圈”,任由人工智能技术肆意发展,那么未来人类可能会遇到一个无法纠正的时刻。
人工智能是一项造福人类的技术,就潜力而言,其社会价值是无法估量的。但如果没有伦理的规范引导,其负面作用会无限放大。比如,造成大规模失业,扩大贫富差距,形成科技寡头统治等,甚至危及人类族群本身。
百度创始人李彦宏曾提出了人工智能伦理的四个原则,包括人工智能的最高原则是安全可控,人工智能的创新愿景是促进人类更平等地获取技术和能力,人工智能的存在价值是教人学习,让人成长,而非超越或替代人,人工智能的终极理想是为人类带来更多自由与可能。
人工智能的伦理原则,往往要事前预警,而非事后处理。凡事预则立,不预则废,伦理的制定需要政府、产业、学术、社会等多方深入讨论,共同提出有洞察力的原则。
个人数据价值时代,个人数据就是一种财产,未来会产生诸如“利息”“分红”这样的资产价值。
第一,创建个性化数据管理工具。
第二,建立数据隐私、数据传输的保护机制。
第三,厘清数据交易产业链中,数据所有者、数据管理者、数据处理者、数据运营者、数据使用者等各方角色与利益分配机制。
第四,打造数据交易的基础设施。其中至少应包括数据交易的实现机制设置、数据价格的发现识别平台及数据产品的快速生成工具。
第五,建立动态的数据定价机制。个人数据是有价值的,要把定价权交给市场。
最后作者告诉我们,我们人要保持清醒,保持自由意志和决策能力,不要产生过多的技术依赖。人工智能要安全、可控,人类自身也要独立、自控,人类的目标才能成为人工智能的目标,人工智能才会是真正的朋友。
软件工程好。
软件工程是一门普通高等学校本科专业,属计算机类专业,基本修业年限为四年,授予工学学士学位。
该专业涉及程序设计语言、数据库、软件开发工具、系统平台、设计模式等方面,培养学生适应计算机应用学科的发展,特别是软件产业的发展,使其具备计算机软件的基础理论、基本知识和基本技能,具有用软件工程的思想、方法和技术来分析、设计和实现计算机软件系统的能力。
总体框架
软件工程专业的知识体系包括通识类知识、学科基础知识、专业知识和实践性教学等。课程体系须支持各项毕业要求的有效达成,进而保证专业培养目标的有效实现。人文社会科学类课程约占15%,数学和自然科学类课程约占15%,实践约占20%,学科基础知识和专业知识课程约占30%。
人文社会科学类教育能够使学生在从事工程设计时考虑经济、环境、法律、伦理等各种制约因素。
百度百科——软件工程
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)