摘要: 给出了一种基于CAN 总线的车灯控制系统设计方案, 介绍了车灯控制系统的硬件设计和软件设计, 对系统的整体结构、硬件配置、软件功能分别作了详细说明。试验表明, 该系统结构简单、性能可靠, 具有广阔的应用前景。
引言
CAN(Controller Area Network) 是德国博世公司在20 世纪80 年代初为汽车业开发的一种车载专用串行数据通信总线, 满足SAE (Society of Automo bileEngineer) 对C 类高速车载网络(≤1Mb/ s) 的要求, 适合动力传动和底盘电子系统的信息传输与控制, 因此也适合一般车载电子系统的信息传输与控制。
与传统技术相比, CAN 总线有如下特点: ①采用非破坏性仲裁技术, 获得仲裁优先的节点将继续传输消息, 消息不会被另一个节点破坏或发生错误; ②CAN 总线采用短帧结构, 每一帧的有效数据为8 字节, 数据传输时间短, 受干扰的概率低, 重新发送的时间短;③ CAN 每帧数据采用CRC (CyclicRedundancy Check) 校验, 保证了数据传输的高可靠性, 适于在高干扰环境中使用;④CAN 采用平衡的差动信号传输数据, 通信速率为5kb/ s 时直接通信距离最远可达10km, 通信距离为40m 时通信速率最高可达1Mb/ s, 可形成场抵消效应; ⑤可以避免汽车线束的重复铺设, 有效减少了汽车上线束的数量, 提高了可靠性, 降低了成本。因此, 利用CAN 总线进行车灯系统设计, 可以提升汽车性能。
1 车灯功能及系统设计
图1 为车灯照明、信号系统, 由照明及信号灯组组成, 包括前大灯(远光灯、近光灯) 、转向灯、雾灯、制动灯、顶灯、位置灯、倒车灯和牌照灯等等, 不同种类车灯的功能不同, 安装位置也不尽相同。按车灯安放位置可以分成左前、左后、右前、右后4 组照明和信号灯组, 以及车内照明灯组, 故可以在CAN 通信网络中设置控制模块、左前模块、左后模块、右前模块、右后模块和车内照明模块, 共6 个节点, 其车灯系统结构图见图2.其中, 控制模块通过对开关状态变化的监测向其它5 个模块发送控制指令, 这5 个模块在接收到属于本模块的控制指令后, 分别控制对应位置的车灯动作。由于CAN 是基于优先级的事件触发协议, 根据行驶安全级别的不同, 系统中各节点的优先级要依次设定。需要强调的是, 开关控制模块是系统控制指令发送模块, 安全性要求最高, 具有最高优先级, 左后和右后模块涉及制动等与行驶安全相关的车灯, 其优先级仅次于开关控制模块。
图1 车灯照明、信号系统
图2 CAN 总线车灯系统结构
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)