随着数据的产生及其使用量的不断增加,对机器学习模型的需求也在成倍增加。由于ML系统包含了算法和丰富的ML库,它有助于分析数据和做出决策。难怪机器学习的知名度越来越高,因为ML应用几乎主导了现代世界的每一个方面。随着企业对这项技术的探索和采用迅速增加,它正在为充足的就业机会奠定基础。然而,在这个颠覆性的领域登陆,你必须装备精良,熟悉一些最好的机器学习工具,以创建高效和实用的ML算法。
1.TensorFlow
TensorFlow是一个免费的机器学习工具,可以在Linux、MacOS和Windows等平台上使用。它提供了一个有助于机器学习的JavaScript库。它可以帮助用户构建和训练他们的模型。TensorFlow是深度学习系统和神经网络的优秀ML工具。用户还可以使用TensorFlow.js这个模型转换器来运行他们现有的模型。
2.KNIME
KNIME已经被应用于医药研究和其他领域,如C++RM客户数据分析、商业智能、文本挖掘和财务数据分析。它是一个免费、开源的数据分析、报告和集成平台。这个机器学习工具可以整合R、Python、Java、JavaScript、C、C++等编程语言的代码。KNIME对于初学者来说非常有用,因为这个平台是在基于GUI的工作流程上为强大的分析而构建的。这意味着,如果用户不具备如何编写代码的知识,他们将能够使用KNIME工作,并得出见解。
3.Scikit-Learn
Scikit-Learn是一个免费的Python机器学习库。它有助于数据挖掘和数据分析,并为分类、回归、聚类、维度缩小、模型选择和预处理提供模型和算法。Scikit-Learn建立在NumPy、SciPy和Matplotlib的基础上,涉及一系列机器学习和统计建模的高效工具。
4.PyTorch
PyTorch基于用于计算机视觉和自然语言处理等应用的Torch库,主要由Facebook的AI研究实验室开发。这个开源的机器学习库通过Autograd模块帮助构建神经网络。它为构建神经网络提供了多种优化算法。PyTorch可以在云平台上使用,并且可以提供分布式训练,拥有众多工具和库。
5.BigML
它是一个综合性的机器学习平台,提供了大量的ML算法,通过统一的集成框架来解决复杂的实际问题。BigML由一系列有用的机器学习功能组成,如分类、回归、聚类分析、时间序列预测、异常检测、主题建模等。由于它在一个方便的Web用户界面中集成了广泛的功能,它允许用户加载他们的数据集,建立和共享他们的机器学习模型,训练和评估他们的模型,并进行新的预测。
6.Weka
Weka是一款数据挖掘、开源的机器学习软件。它可以通过图形用户界面(GUI)、标准终端应用程序或JavaAPI进行访问。Weka包含了一系列用于数据分析和预测建模的可视化工具和算法,广泛用于教学、研究和工业应用。它支持各种标准的数据挖掘任务,特别是,数据预处理、聚类、分类、回归、可视化和特征选择。
7.Colab
Colab是谷歌研究的一款机器学习任务产品。它允许开发人员通过浏览器编写和执行Python代码。Colab笔记本可以让用户将可执行代码和丰富的文本结合在一个文档中,还有图像、HTML、LaTeX等。当用户创建他们的Colab笔记本时,它们被存储在他们的GoogleDrive账户中,可以很容易地与同行分享。
8.亚马逊机器学习
亚马逊提供了一批机器学习工具。亚马逊机器学习(AML)是一款基于云计算的强大机器学习软件应用,可供各级网络和移动应用开发者使用。AML提供向导&可视化工具,以及支持三种类型的模型:多类分类、二元分类和回归。
9.IBMWatsonStudio
IBMWatsonStudio允许用户构建、运行和管理机器学习模型。它提供了通过协作数据体验解决业务问题所需的所有工具。它将重要的开源工具(包括RStudio、Spark和Python)汇集在一个集成环境中,以及额外的工具,如管理的Spark服务和数据整形设施,在一个安全和受管理的环境中。
10.ApacheMahout
作为一个开源的分布式线性代数框架,ApacheMahout帮助数学家、统计学家和数据科学家执行他们的算法。它是Apache软件基金会的一个项目,旨在免费实现分布式或其他可扩展的ML算法,主要集中在线性代数上。它包含了用于常见数学运算的Java库。
责任编辑人:CC
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)