半导体阀门是由多个串连的半导体元件和多个液体冷却器组成。半导体元件和冷却器作层叠式排列,每个半导体元件都置于两个冷却器之间。阀门有压力装置,以便产生作用于层叠排列轴向的压力。阀门有分压器,与各个半导体元件并联相接。该分压器由电阻组成。
半导体阀门以前已为人们所知,例如瑞典公布的第334,947号专利申请就介绍过这种阀门(相应于专利号为3,536,133的美国专利)。这类阀门也已为人们所用,例如用于整流器上,通过高压直流电输送电能或作为开关器件的组成部分,用作静态的无效功率补偿等等。
半导体阀门要同时使用一系列的分压器和半导体元件,并使每个半导体元件与一个分压器并联连接。每一个这样的分压器一般都包含一个或一个以上的电阻。配有这种分压器的阀门以前亦为人们所知,例如专利号为3,794,908和4,360,864的美国专利就描述过这类阀门。该分压器的能量损耗很高,一般达到几百瓦的数量级。如果电阻是气冷式的,则有几个严重的缺点,电阻必须设有冷却用的凸缘或类似的冷却部件,为保证电阻器能充分地向周围的空气散发热量而不致于温度升得太高,电阻的尺寸就要做得比较大而且,为了排走释放出来的热量,还必须保证有足够的冷却气流流过电阻。
由于这些原因,半导体阀门如果使用气冷式的电阻的话,其体积就会变得比较庞大。这种电阻还有一个缺点,就是电阻器释放出来的热量是很高的,随之也会升高阀门和室内的气温,如果不专门增加一些冷却的措施,就会升高了室内其他机件和设备的工作温度。
半导体阀门的制造液冷式大功率电阻,这以前也已经为人们所知。例如专利号为2,274,381的美国专利就介绍过这种电阻。不过,要在一个半导体阀门中逐个地制造众多的这种液冷式分压器电阻,将使阀门变得很复杂,需要很多流通冷却液体的接头和管道。阀门仍然会比较庞大,并且以电阻和冷却液体管道散发出来一定的热量仍然会升高阀门和室内的温度。
半导体阀门把分压器电阻安装在一条冷却杆上,对阀门的半导体元件进行液体冷却,这种技术以前也已为人们所知,美国的第4,178,630号专利就介绍了这种技术。从电阻器散发出的部分热量将被流过冷却杆的冷却液体所吸收。但是散发到周围空气中的热量仍然是比较高的。
本发明的目的就是要制造一种最初所描述的简单而又小巧的阀门,使分压器电阻向周围空气散发的热量降到最低的限度。
半导体阀门冷却器的一个变更实施例。图4显示了电阻器装在各个分离的板块上的一个实施例。图5显示了冷却器的特别孔道中应用电阻的一个实施例。显示了本发明所述的半导体阀门的一个实例,它们分别是从两个互相垂直的方向上观察阀门而得出的视图,这两个观察方向均垂直于阀门的纵轴线。阀门有6个半导体元件1-6,它们可以是半导体开关元件或是二极管。经过设计,半导体元件可以承受压力的接触和进行双重冷却,亦即是,这些元件要承受安装在每个元件两侧的两个冷却器之间的压力。
半导体散热器有开关的,半导体散热器因其散热效果好,结构简单被广泛的应用在各个领域内对相关仪器设备进行散热,例如,在电箱内为了使得继电器等一些高功率电子元件散热的效果更好,通常会对相关电子元件安装半导体散热器对其进行散热;但是现有的半导体散热器存在以下方面的不足:(1)现有技术中散热器安装不便,使得拆装散热器麻烦;(2)现有技术中的散热器缺少过温保护开关,不能够防止电路元件因为温度过高而发生损坏;(3)现有半导体散热器散热效果差。本实用新型的主要目的为提供一种半导体散热器,旨在解决现有技术中:散热器安装不便,使得拆装半导体散热器麻烦;半导体散热器缺少过温保护开关,不能够防止电路元件因为温度过高而发生损坏;半导体散热器散热效果差的不足。下面,我们将采用对比分析的方法来认识P型半导体和N型半导体。
P型半导体也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。
N型半导体也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。
扩展资料
半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。
以GaN(氮化镓)为代表的第三代半导体材料及器件的开发是新兴半导体产业的核心和基础,其研究开发呈现出日新月异的发展势态。GaN基光电器件中,蓝色发光二极管LED率先实现商品化生产 成功开发蓝光LED和LD之后,科研方向转移到GaN紫外光探测器上 GaN材料在微波功率方面也有相当大的应用市场。氮化镓半导体开关被誉为半导体芯片设计上一个新的里程碑。美国佛罗里达大学的科学家已经开发出一种可用于制造新型电子开关的重要器件,这种电子开关可以提供平稳、无间断电源。
参考资料
半导体-百度百科
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)