python– 非周期函数与NumPy的互相关

python– 非周期函数与NumPy的互相关,第1张

概述我有两个数据集,我试图互相关联.它们看起来类似于arctan函数,所以我一直用它作为模型来研究如何进行信号处理.x = linspace(-15, 15, 2**13) f1 = arctan(x) f2 = arctan(x + 2) 我需要回答的问题是,我需要移动绿色信号以使其(大部分)与蓝色信号重叠多少?我认为这就像在f1和f2的互相关函数中找到最大值

我有两个数据集,我试图互相关联.它们看起来类似于arctan函数,所以我一直用它作为模型来研究如何进行信号处理.

x = linspace(-15,15,2**13)f1 = arctan(x)f2 = arctan(x + 2)

我需要回答的问题是,我需要移动绿色信号以使其(大部分)与蓝色信号重叠多少?我认为这就像在f1和f2的互相关函数中找到最大值一样简单,我大致遵循这里的建议:How to correlate two time series with gaps and different time bases?.这就是我一直在尝试的

c = correlate(f1,f2,'full')s = arange(1-2**13,2**13)dx = 30/2**13shift = s[c.argmax()]*dx

我希望转变或多或少恰好等于2,但事实上它只有0.234.这对我没有任何意义;我发现互相关的最大x坐标,应该在两个信号最大重叠的地方找到.

关于如何计算这种功能的数量的任何想法?

编辑:我应该补充一点,对于我的真实数据,所有值都将介于0和1之间

编辑编辑:以下功能实际上更像我的真实数据:

x = linspace(-15,400)f1 = (arctan(-x) + pi/2) / pif2 = (arctan(-x + 2) + pi/2) / pi

所以使用这里给出的公式:http://paulbourke.net/miscellaneous/correlate/我可以写一个互相关函数来填充数据,在左边添加一个,在右边添加零:

def xcorr(x,y);    mx = x.mean()    my = y.mean()    sx = x.std()    sy = y.std()    r = zeros(2*len(x))    for d in range(-len(x),len(x)):        csum = 0        for i in range(0,len(x):            yindx = i - d            if i - d < 0:                yval = 1            elif i - d >= len(x):                yval = 0            else:                yval = y[yindx]            csum += (x[i] - mx) * (yval - my)        r[d + len(x)] = csum / (sx * sy)    return r

有了这个功能,我现在可以做到

c = xcorr(f1,f2)s = arange(-400,400)dx = 30/400shift = s[c.argmax()] * dx

这是2.025,这个精度可以达到2.所以看起来JamIE是正确的,问题在于信号的填充如何与numpy相关.

所以,显然我的xcorr功能非常缓慢.现在的问题是,有没有办法让NumPy做类似的事情,或者我应该继续使用ctypes在C中编写我的算法?

最佳答案正如人们所指出的那样,交叉相关性被数据之外的填充所混淆.

虽然感觉好像丢弃了良好的数据,但通常最好只修剪数据集,以便可以在没有假设的情况下完成相关性(至少与将实际数据与填充的补充数据相关联的替代方案相比) .

x = linspace(-15,4000)f1 = (arctan(-x) + pi/2) / pif2 = (arctan(-x + 2) + pi/2) / piL4 = int(len(f2)/8)sf2 = f2[L4:-L4]c = correlate(f1-mean(f1),sf2-mean(f1),'same')print "peak correlation occurs at:",x[argmax(c)]  # -2.02925731433plt.plot(x,c)plt.show()

但是,我不确定xcorr是最好的方法.如何只是将不同班次的y轴值之间的距离相加并取最小值,这样就可以摆脱零点所在的所有问题,等等. 总结

以上是内存溢出为你收集整理的python – 非周期函数与NumPy的互相关全部内容,希望文章能够帮你解决python – 非周期函数与NumPy的互相关所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/1205404.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-06-04
下一篇 2022-06-04

发表评论

登录后才能评论

评论列表(0条)

保存