昨天有人问我关于调用mask_rcnn模型的问题,忽然想到最近三个月都没用opencv调用训练好的mask_rcnn模型了,今晚做个尝试,所以重新编译了 opencv4,跑个案例试试
#include <fstream>#include <sstream>#include <iostream>#include <string.h>#include <opencv2/dnn.hpp>#include <opencv2/imgproc.hpp>#include <opencv2/highgui.hpp>using namespace cv;using namespace dnn;using namespace std;RNG rng1;// Initialize the parametersfloat confThreshold = 0.5; // ConfIDence thresholdfloat maskThreshold = 0.3; // Mask threshold//vector<string> classes;//vector<Scalar> colors;// Draw the predicted bounding BoxvoID drawBox(Mat& frame,int classID,float conf,Rect Box,Mat& objectMask);// Postprocess the neural network‘s output for each framevoID postprocess(Mat& frame,const vector<Mat>& outs);int main(){ // Give the configuration and weight files for the model //String textGraph = "./mask_rcnn_inception_v2_coco_2018_01_28/mask_rcnn_inception_v2_coco_2018_01_28.pbtxt"; //String modelWeights = "./mask_rcnn_inception_v2_coco_2018_01_28/froZen_inference_graph.pb"; String modelWeights = "E:\Opencv\model_1\mask_rcnn_inception_v2_coco_2018_01_28\froZen_inference_graph.pb"; String textGraph = "E:\Opencv\model_1\mask_rcnn_inception_v2_coco_2018_01_28\mask_rcnn_inception_v2_coco_2018_01_28.pbtxt"; // Load the network Net net = readNetFromTensorflow(modelWeights,textGraph); net.setPreferableBackend(DNN_BACKEND_OPENCV); net.setPreferableTarget(DNN_TARGET_cpu); // Open a vIDeo file or an image file or a camera stream. string str,outputfile; VIDeoCapture cap(0);//根据摄像头端口ID不同,修改下即可 //VIDeoWriter vIDeo; Mat frame,blob; // Create a window static const string kWinname = "Deep learning object detection in OpenCV"; nameDWindow(kWinname,WINDOW_norMAL); // Process frames. if (1>0) { // get frame from the vIDeo //cap >> frame; frame = cv::imread("D:\image\5.png"); // Stop the program if reached end of vIDeo if (frame.empty()) { cout << "Done processing !!!" << endl; cout << "Output file is stored as " << outputfile << endl; } // Create a 4D blob from a frame. blobFromImage(frame,blob,1.0,Size(frame.cols,frame.rows),Scalar(),true,false); //blobFromImage(frame,blob); //Sets the input to the network net.setinput(blob); // Runs the forward pass to get output from the output layers std::vector<String> outnames(2); outnames[0] = "detection_out_final"; outnames[1] = "detection_masks"; vector<Mat> outs; net.forward(outs,outnames); // Extract the bounding Box and mask for each of the detected objects postprocess(frame,outs); // Put efficIEncy information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes) vector<double> layersTimes; double freq = getTickFrequency() / 1000; double t = net.getPerfProfile(layersTimes) / freq; string label = format("Mask-RCNN on 2.5 GHz Intel Core i7 cpu,Inference time for a frame : %0.0f ms",t); putText(frame,label,Point(0,15),Font_HERShey_SIMPLEX,0.5,Scalar(0,0,0)); // Write the frame with the detection Boxes Mat detectedFrame; frame.convertTo(detectedFrame,CV_8U); imshow(kWinname,frame); } //cap.release(); waitKey(0); return 0;}// For each frame,extract the bounding Box and mask for each detected objectvoID postprocess(Mat& frame,const vector<Mat>& outs){ Mat outDetections = outs[0]; Mat outMasks = outs[1]; // Output size of masks is NxCxHxW where // N - number of detected Boxes // C - number of classes (excluding background) // HxW - segmentation shape const int numDetections = outDetections.size[2]; const int numClasses = outMasks.size[1]; outDetections = outDetections.reshape(1,outDetections.total() / 7); for (int i = 0; i < numDetections; ++i) { float score = outDetections.at<float>(i,2); if (score > confThreshold) { // Extract the bounding Box int classID = static_cast<int>(outDetections.at<float>(i,1)); int left = static_cast<int>(frame.cols * outDetections.at<float>(i,3)); int top = static_cast<int>(frame.rows * outDetections.at<float>(i,4)); int right = static_cast<int>(frame.cols * outDetections.at<float>(i,5)); int bottom = static_cast<int>(frame.rows * outDetections.at<float>(i,6)); left = max(0,min(left,frame.cols - 1)); top = max(0,min(top,frame.rows - 1)); right = max(0,min(right,frame.cols - 1)); bottom = max(0,min(bottom,frame.rows - 1)); Rect Box = Rect(left,top,right - left + 1,bottom - top + 1); // Extract the mask for the object Mat objectMask(outMasks.size[2],outMasks.size[3],CV_32F,outMasks.ptr<float>(i,classID)); // Draw bounding Box,colorize and show the mask on the image drawBox(frame,classID,score,Box,objectMask); } }}// Draw the predicted bounding Box,colorize and show the mask on the imagevoID drawBox(Mat& frame,Mat& objectMask){ //Draw a rectangle displaying the bounding Box rectangle(frame,Point(Box.x,Box.y),Point(Box.x + Box.wIDth,Box.y + Box.height),Scalar(255,178,50),3); //Get the label for the class name and its confIDence /*string label = format("%.2f",conf); if (!classes.empty()) { CV_Assert(classID < (int)classes.size()); label = classes[classID] + ":" + label; }*/ //display the label at the top of the bounding Box /* int baseline; Size labelSize = getTextSize(label,0.5,1,&baseline); Box.y = max(Box.y,labelSize.height); rectangle(frame,Box.y - round(1.5*labelSize.height)),Point(Box.x + round(1.5*labelSize.wIDth),Box.y + baseline),Scalar(255,255,255),FILLED); putText(frame,0.75,Scalar(0,0),1);*/ //Scalar color = colors[classID%colors.size()]; Scalar color = Scalar(rng1.uniform(0,255),rng1.uniform(0,255)); // Resize the mask,threshold,color and apply it on the image resize(objectMask,objectMask,Size(Box.wIDth,Box.height)); Mat mask = (objectMask > maskThreshold); Mat coloredRoi = (0.3 * color + 0.7 * frame(Box)); coloredRoi.convertTo(coloredRoi,CV_8UC3); // Draw the contours on the image vector<Mat> contours; Mat hIErarchy; mask.convertTo(mask,CV_8U); findContours(mask,contours,hIErarchy,RETR_CCOMP,CHAIN_APPROX_SIMPLE); drawContours(coloredRoi,-1,color,5,liNE_8,100); coloredRoi.copyTo(frame(Box),mask);}
检测速度和python比起来偏慢
运行日志:
[ INFO:0] global E:\Opencv\opencv-4.1.1\modules\vIDeoio\src\vIDeoio_registry.cpp (187) cv::`anonymous-namespace‘::VIDeoBackendRegistry::VIDeoBackendRegistry VIDEOIO: Enabled backends(7,sorted by priority): FFMPEG(1000); GSTREAMER(990); INTEL_MFX(980); MSMF(970); DSHOW(960); CV_IMAGES(950); CV_MJPEG(940)[ INFO:0] global E:\Opencv\opencv-4.1.1\modules\vIDeoio\src\backend_plugin.cpp (340) cv::impl::getPluginCandIDates Found 2 plugin(s) for GSTREAMER[ INFO:0] global E:\Opencv\opencv-4.1.1\modules\vIDeoio\src\backend_plugin.cpp (172) cv::impl::Dynamiclib::libraryLoad load E:\Opencv\opencv_4_1_1_install\bin\opencv_vIDeoio_gstreamer411_64.dll => Failed[ INFO:0] global E:\Opencv\opencv-4.1.1\modules\vIDeoio\src\backend_plugin.cpp (172) cv::impl::Dynamiclib::libraryLoad load opencv_vIDeoio_gstreamer411_64.dll => Failed[ INFO:0] global E:\Opencv\opencv-4.1.1\modules\core\src\ocl.cpp (888) cv::ocl::haveOpenCL Initialize OpenCL runtime...
总结以上是内存溢出为你收集整理的opencv4 mask_rcnn模型调(c++)全部内容,希望文章能够帮你解决opencv4 mask_rcnn模型调(c++)所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)