判断函数奇偶性的方法

判断函数奇偶性的方法,第1张

判定奇偶性四法:

(1)定义法

用定义来判断函数奇偶性,是主要方法 首先求出函数的定义域,观察验证是否关于原点对称 其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性

(2)用必要条件

具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件

例如,函数y=的定义域(-∞,1)∪(1,+∞),定义域关于原点不对称,所以这个函数不具有奇偶性

(3)用对称性

若f(x)的图象关于原点对称,则 f(x)是奇函数

若f(x)的图象关于y轴对称,则 f(x)是偶函数

(4)用函数运算

如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)•g(x)是偶函数 简单地,“奇+奇=奇,奇×奇=偶”

类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”

扩展资料:

奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数);偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性。

即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能倒导其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。

说明:

①奇、偶性是函数的整体性质,对整个定义域而言。

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与 比较得出结论)

③判断或证明函数是否具有奇偶性的根据是定义。

④如果一个奇函数  在x=0处有意义,则这个函数在x=0处的函数值一定为0。并且关于原点对称。

⑤如果函数定义域不是关于原点对称或不符合奇函数、偶函数的条件则叫做非奇非偶函数。例如 [  ]或[  ](定义域不关于原点对称)

⑥如果函数既符合奇函数又符合偶函数,则叫做既奇又偶函数。例如 

注:任意常函数(定义域关于原点对称)均为偶函数,只有  是既奇又偶函数

偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。

奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数。

定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴成轴对称图形。

f(x)为奇函数《==》f(x)的图像关于原点对称

点(x,y)→(-x,-y)

奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

性质:

1、大部分偶函数没有反函数(因为大部分偶函数在整个定义域内非单调函数)。

2、偶函数在定义域内关于y轴对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同。

3、奇±奇=奇(可能为既奇又偶函数) 偶±偶=偶(可能为既奇又偶函数) 奇X奇=偶 偶X偶=偶 奇X偶=奇(两函数定义域要关于原点对称)

4、对于F(x)=f[g(x)]:

若g(x)是偶函数且f(x)是偶函数,则F[x]是偶函数。

若g(x) 是偶函数且f(x)是奇函数,则F[x]是偶函数。

若g(x)是奇函数且f(x)是奇函数,则F[x]是奇函数。

若g(x)是奇函数且f(x)是偶函数,则F[x]是偶函数。

5、奇函数与偶函数的定义域必须关于原点对称。

参考资料:

-函数奇偶性

判定奇偶性四法:

(1)定义法

用定义来判断函数奇偶性,是主要方法。首先求出函数的定义域,观察验证是否关于原点对称。其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。

(2)用必要条件

具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。

例如,函数y=的定义域(-∞,1)∪(1,+∞),定义域关于原点不对称,所以这个函数不具有奇偶性。

(3)用对称性

若f(x)的图象关于原点对称,则f(x)是奇函数。若f(x)的图象关于y轴对称,则f(x)是偶函数。

(4)用函数运算

如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)•g(x)是偶函数。简单地,“奇+奇=奇,奇×奇=偶”。类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”。

奇函数和偶函数判断如下

1、定义上来看:

一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫偶函数。

一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫奇函数。

2、图像上来看:

偶函数的tuxiang关于y轴对称,奇函数的图xiang关于原点成中心对称图形。

f(x)为奇函数《==》f(x)的图象关于原点对称点(x,y)→(-x,-y)奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

奇函数、偶函数的图像特点

1、奇函数图象关于原点对称。奇函数的图象,是个以原点为对称中心的中心对称图象。

2、偶函数图象关于y轴对称。偶函数的图象,是个以y轴为对称轴的轴对称图象。

3、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

定义域关于原点对称,根据函数的对称轴来看。

方法一,奇、偶函数的定义,主要考察f(-x)是否与-f(x),f(x),相等。方法二,利用一些已知函数的奇偶性及下列准则,两个奇函数的代数和是奇函数,两个偶函数的代数和是偶函数,奇函数与偶函数的和既非奇函数,也非偶函数,两个奇函数的乘积是偶函数,两个偶函数的乘积是偶函数,奇函数与偶函数的乘积是奇函数。

函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

解析:

对于一元函数y=f(x),讨论其奇偶性时,需从两方面入手:1,定义域是否关于原点对称;2,在满足条件1的情况下,看是否满足f(x)=f(-x)(偶函数)或者f(x)=-f(-x)(奇函数)。

对于一元函数y=f(x),讨论其增减性时可以有多种方式求证:

1,定义法。例如:在定义域内,当x1<x2时,有f(x1)<f(x2),则此函数在定义域内为单调增函数。

2,复合函数法。我们有口诀:同增异减。例如:y=f(t),t=t(x),即y=f(t(x))。如果t是x的单调增函数(在定义域内)且y是t的单调增函数(在定义域内),那么y是x的单调增函数;如果t是x的单调增函数(在定义域内)且y是t的单调减函数(在定义域内),那么y是x的单调减函数。

3,导数法。

如果有误,请指正!

谢谢!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12163003.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存