e的导数是0,任何常(函)数的导数为0。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
扩展资料:
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。
反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的 *** 作,它们都是微积分学中最为基础的概念。
-导数
Y=a^x(a>0且不=1)
指数函数的一般形式为y=a^x(a>0且不=1),函数图形上凹,a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的函数。
指数函数既不是奇函数也不是偶函数。
要想使得x能够取整个实数集合为定义域,则只有使得a的不同大小影响函数图形的情况。指数函数是重要的基本初等函数之一。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。注意,在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
e^(1/x)的图像如下:
画图像步骤:
1、画图时把(1/x)看成一个整体部分。即 y=e^x,e>1,指数函数。
2、图像过(0,1)点,在X轴上方。单增,以X轴为渐近线。
3、y=e^(-x)= (1/e)^x=1/ e^x,恰为y=e^x的倒数。e^x e^(-x)= e^0=1,其图像与y=e^x的图像关于Y轴对称。
4、y=e^│x│= e^x(x≥0)和e^(-x)(x<0),是分段函数。
扩展资料:
底数e的来源:
第一次提到常数e,是约翰·纳皮尔(John Napier)于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德(William Oughtred)制作。第一次把e看为常数的是雅各·伯努利(Jacob Bernoulli)。
已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》(Mechanica)。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。
用e表示的确实原因不明,但可能因为e是“指数”(exponential)一字的首字母。另一看法则称a,b,c和d有其他经常用途,而e是第一个可用字母。
e的公式:ln(1+a)~a(a->0);a^ln(b)=b^ln(a)。
ln与e之间的公式:ln是以e为底的对数函数b=e^a等价于a=lnb。常数e的含义是单位时间内,持续的翻倍增长所能达到的极限值。
e的计算公式详细分析
1关于e的公式:ln(1+a)~a(a->0);a^ln(b)=b^ln(a)。ln与e之间的公式:ln是以e为底的对数函数b=e^a等价于a=lnb。常数e的含义是单位时间内,持续的翻倍增长所能达到的极限值。
2㏑即自然对数,以e为底数的对数通常用于㏑,而且e还是一个超越数。e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最自然的,所以叫自然对数。e约等于271828等。
解答e的原函数是ex+C,其中C是任意常数
解析e是自然对数的底数,是一个常数。满足lne
=
1。如果一个函数的导数是一个常数,那么这个原函数必定是一次函数,利用数学的积分知识,可以得到原函数为:
∫
e
dx
=
ex+C
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)