- 预备知识
- 空洞卷积
- 1、DeepLab V1
- 1.1 基于VGG模型
- 1.2 总体架构
- 1.2.1 Fully Connected CRF(条件随机场)
- 1.3 DeepLab V1模型实验
- 2、DeepLab V2
- 2.1 整体架构
- 2.2 训练策略
- 2.2.1 学习率的调整
- 3、DeepLab V3
- 3.1 cascade形式的DeepLab V3
- 3.2 parallel形式的DeepLab V3
- 4、DeepLab V3+
- 4.1 深度可分离空洞卷积
- 4.2 Modified Xception
参考我之前写的博客:
CSDN链接 空洞卷积详解
其他图像分割模型如FCN和U-Net都使用了反卷积和pooling保持分别率不变,而只使用空洞卷积就可以实现反卷积和pooling的效果,而且空洞卷积还具有可学习的优点。
1.1 基于VGG模型
1、以VGG模型为基础,因为想利用VGG模型预训练的参数;
2、去除掉最后2个max pooling,并使用空洞卷积保持感受野一致,空洞卷积使用在原VGG模型最后2个max pooling之间;
3、最后3个FC层都换成3×3的卷积,所以输出feature size为28×28;
4、第3步使用3×3 的卷积输出的通道数换成1024,不影响效果而且也增加速度;
1、基于VGG模型修改的结构在上图的第一行已完成;
2、第四步是对基于VGG修改模型输出的结果进行双线性插值,增加8倍还原成原feature size的大小;
3、使用了Fully Connected CRF(条件随机场)
公式:
其中:
解释: 图像分割是对每一个像素点进行分类,而每一个像素之间的分类是有联系的,所以用到了条件随机场。优化
E
(
x
)
E(x)
E(x),使其最小,所以可以使用梯度下降法来优化。
E
(
x
)
E(x)
E(x):优化
E
(
x
)
E(x)
E(x)使其最小;
θ
i
(
x
i
)
\theta_i(x_i)
θi(xi):仔细看就会发现如果
P
(
x
i
)
P(x_i)
P(xi)越大则
θ
i
(
x
i
)
\theta_i(x_i)
θi(xi)越小;
∑
i
θ
i
(
x
i
)
\sum_{i}\theta_i(x_i)
∑iθi(xi):是各个像素概率的联合概率分布;
θ
i
,
j
(
x
i
,
x
j
)
\theta_{i,j}(x_i,x_j)
θi,j(xi,xj):是衡量像素与像素之间的概率分布;
∣
∣
p
i
−
p
j
∣
∣
2
||p_i-p_j||^2
∣∣pi−pj∣∣2:像素之间的距离;
∣
∣
I
i
−
I
j
∣
∣
2
||I_i-I_j||^2
∣∣Ii−Ij∣∣2:像素之间的灰度值;
σ
\sigma
σ:正态分布相关的参数;
ω
\omega
ω:待优化的参数;
总结:
1、增加CRF、通过设置较大的dilation增加感受野、以及多尺度输入可增加模型的效果;
2、所以根据上面所做的增加模型效果的实验,就诞生了DeepLab V2。
总结:
根据第一行和最后一行可知:在3*3的kernel size下,增加stride可增加模型的效果,而且还减少了参数量。
2、DeepLab V2
与V1版本的区别就是引入了ASPP,结合V1所做的实验,增加多尺度训练和较大的感受野可增加mIOU;
步骤:
1、对输入的feature map进行分组空洞卷积,rate为(6,12,18,24),此对应多尺度输入;
2、通过padding,使各个组输出的feature size与输入相同;
3、对各个组输出的feature map进行sum;
ASPP code:
import torch
from torch._C import Size
import torch.nn as nn
import torch.nn.functional as F
class ASPP(nn.Module):
"""
空洞空间金字塔池化(Atrous Spatial Pyramid Pooling)在给定的输入上以不同采样率(dilation)的空洞卷积
并行采样,相当于以多个比例捕捉图像的上下文。
"""
def __init__(self, in_chans, out_chans, rate=1):
super(ASPP, self).__init__()
# 以不同的采样率预制空洞卷积(通过调整dilation实现)
# 1x1卷积——无空洞
self.branch1 = nn.Sequential(
nn.Conv2d(in_chans, out_chans, 1, 1, padding=0, dilation=rate, bias=True),
nn.BatchNorm2d(out_chans),
nn.ReLU(inplace=True)
)
# 3x3卷积——空洞6
self.branch2 = nn.Sequential(
nn.Conv2d(in_chans, out_chans, 3, 1, padding=6 * rate, dilation=6 * rate, bias=True),
nn.BatchNorm2d(out_chans),
nn.ReLU(inplace=True)
)
# 3x3卷积——空洞12
self.branch3 = nn.Sequential(
nn.Conv2d(in_chans, out_chans, 3, 1, padding=12 * rate, dilation=12 * rate, bias=True),
nn.BatchNorm2d(out_chans),
nn.ReLU(inplace=True)
)
# 3x3卷积——空洞18
self.branch4 = nn.Sequential(
nn.Conv2d(in_chans, out_chans, 3, 1, padding=18 * rate, dilation=18 * rate, bias=True),
nn.BatchNorm2d(out_chans),
nn.ReLU(inplace=True)
)
# 全局平均池化——获取图像层级特征,image pooling,
self.branch5_avg = nn.AdaptiveAvgPool2d(1) # 1:输出为1*1
# 1x1的conv、bn、relu——用于处理平均池化所得的特征图
self.branch5_conv = nn.Conv2d(in_chans, out_chans, 1, 1, 0, bias=True)
self.branch5_bn = nn.BatchNorm2d(out_chans)
self.branch5_relu = nn.ReLU(inplace=True)
# 1x1的conv、bn、relu——用于处理concat所得的特征图
self.conv_cat = nn.Sequential(
nn.Conv2d(out_chans * 5, out_chans, 1, 1, padding=0, bias=True),
nn.BatchNorm2d(out_chans),
nn.ReLU(inplace=True)
)
def forward(self, x):
# 获取size——用于上采样的时候确定上采样到多大
b, c, h, w = x.size()
# 一个1x1的卷积
conv1x1 = self.branch1(x)
# 三个3x3的空洞卷积
conv3x3_1 = self.branch2(x)
conv3x3_2 = self.branch3(x)
conv3x3_3 = self.branch4(x)
# 一个平均池化
global_feature = self.branch5_avg(x)
# 对平均池化所得的特征图进行处理
global_feature = self.branch5_relu(self.branch5_bn(self.branch5_conv(global_feature)))
# 将平均池化+卷积处理后的特征图上采样到原始x的输入大小
global_feature = F.interpolate(global_feature, (h, w), None, 'bilinear', True)
# 把所有特征图cat在一起(包括1x1、三组3x3、平均池化+1x1),cat通道的维度
feature_cat = torch.cat([conv1x1, conv3x3_1, conv3x3_2, conv3x3_3, global_feature], dim=1)
# 最后再连一个1x1卷积,把cat翻了5倍之后的通道数缩减回来
result = self.conv_cat(feature_cat)
return result
2.1 整体架构
2.2 训练策略
总结:
通过调小batch size和增加训练的epoch可增加mIOU。
随着训练epoch的增加,学习率应作适当减小,所以V2提出新的学习率的策略,公式为:
l
r
=
l
r
⋅
(
1
−
i
t
e
r
m
a
x
_
i
t
e
r
)
p
o
w
e
r
lr = lr\cdot(1-\frac{iter}{max\_iter})^{power}
lr=lr⋅(1−max_iteriter)power
其中原论文 p o w e r power power设置的是:0.9;
3、DeepLab V3
DeepLab V3有cascade和parallel两种的形式,先介绍cascade;
3.1 cascade形式的DeepLab V3
重要点:
1、output stride:输出的feature map为原输入的多少分之一,如:为
1
/
4
,
1
/
8
,
1
/
16
1/4,1/8,1/16
1/4,1/8,1/16;
2、通过做实验,output stride越大效果越不好,所以cascade形式采用下面一种;
3、
b
l
o
c
k
1
,
2
,
3
,
4...
block_{1,2,3,4...}
block1,2,3,4...为resnet50的block;
如何避免输出图片栅格化:
1、因为空洞卷积只涉及block4中的3×3的卷积,为了避免栅格化所以设置dilation rate为1,2,4,不能设置为同一个值;
2、上图中的rate的意思是:
r
a
t
e
⋅
(
1
,
2
,
4
)
rate \sdot(1,2,4)
rate⋅(1,2,4);
3.2 parallel形式的DeepLab V3
因为在cascade模型中,网络做的太深效果反而出现下降,所以就引用了ASPP。
4、DeepLab V3+
改进点:
1、借鉴了Encode和Decode的结合,进行了特征的concat;
2、使用了Modified Xception;
3、使用了深度可分离空洞卷积(Depthwise Separable Convolution);
先说一下什么是Depthwise Convolution,它就是先对输入的feature map的每一个通道进行卷积,如果输入的feature map为
D
F
⋅
D
F
⋅
M
D_F\sdot D_F\sdot M
DF⋅DF⋅M,输出的feature map仍为
D
F
⋅
D
F
⋅
M
D_F\sdot D_F\sdot M
DF⋅DF⋅M,然后再进行
1
∗
1
∗
M
∗
N
1 * 1 * M * N
1∗1∗M∗N的卷积,Operations的计算如上图,所以通过Depthwise Convolution后减少了计算量。
总结:
1、类似于resnet,但与resnet有很大的不同;
2、Modified Xception使用了Depthwise Separable Convolution;
DeepLab V3+ 代码:
"""
Attention:需要把上一个ASPP的代码和当前的代码放在同一目录下
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
bn_mom = 0.0003
# 预先训练模型地址
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'
}
# same空洞卷积
# 对于k=3的卷积,通过设定padding=1*atrous,保证添加空洞后的3x3卷积,输入输出feature map同样大小
def conv3x3(in_planes, out_planes, stride=1, atrous=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1 * atrous, dilation=atrous, bias=False)
# 通过 same 空洞卷积实现BasicBlock
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_chans, out_chans, stride=1, atrous=1, downsample=None):
super(BasicBlock, self).__init__()
# 使用自定义的same 空洞卷积
self.conv1 = conv3x3(in_chans, out_chans, stride, atrous)
self.bn1 = nn.BatchNorm2d(out_chans)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(out_chans, out_chans)
self.bn2 = nn.BatchNorm2d(out_chans)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
# 实现带有空洞卷积的Bottleneck
# 这个bottleneck结构,
# 在resnet 50的block1中串连使用了3个,block2中串连使用了4个,block3中串连使用了6个,block4中串连使用了3个。
# 在resnet 101的block1中串连使用了3个,block2中串连使用了4个,block3中串连使用了24个,block4中串连使用了3个。
# 在resnet 152的block1中串连使用了3个,block2中串连使用了8个,block3中串连使用了36个,block4中串连使用了3个。
# 所以,当我们定block1,block2,block3,block4分别为[3,4,6,3]时,就对应resnet50
# 所以,当我们定block1,block2,block3,block4分别为[3,4,24,3]时,就对应resnet101
# 所以,当我们定block1,block2,block3,block4分别为[3,8,36,3]时,就对应resnet152
class Bottleneck(nn.Module):
# bottleneck block中,有三个卷积层,分别是:C1:1x1conv,C2:3x3conv,C3:1x1conv
# C1的输入featue map 的channel=4C,输处feature map 的channel=C
# C2的输入featue map 的channel=C,输处feature map 的channel=C
# C3的输入featue map 的channel=C,输处feature map 的channel=4C
# expansion:定义瓶颈处的feature map,C2的输入输出feature map 的 channel是非瓶颈处的channel的1/4
expansion = 4
def __init__(self, in_chans, out_chans, stride=1, atrous=1, downsample=None):
super(Bottleneck, self).__init__()
# 这里in_chans是out_chans的4倍,在make_layer函数里有实现,大概在本代码164行左右
self.conv1 = nn.Conv2d(in_chans, out_chans, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_chans)
# same空洞卷积
self.conv2 = nn.Conv2d(out_chans, out_chans, kernel_size=3, stride=stride,
padding=1 * atrous, dilation=atrous, bias=False)
self.bn2 = nn.BatchNorm2d(out_chans)
self.conv3 = nn.Conv2d(out_chans, out_chans * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_chans * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
# 定义完整的空洞残差网络
class ResNet_Atrous(nn.Module):
# 当layers=[3,4,6,3]时,block为bottlenet时,就生成resnet50
def __init__(self, block, layers, atrous=None, os=16):
super(ResNet_Atrous, self).__init__()
self.block = block
stride_list = None
if os == 8:
# 控制block2,block3,block4的第一个bottleneck的3x3卷积的stride
# 这里指将block2内的第一个bottleneck的3x3卷集的stride设置为2
# 这里指将block3内的第一个bottleneck的3x3卷集的stride设置为1
# 这里指将block4内的第一个bottleneck的3x3卷集的stride设置为1
stride_list = [2, 1, 1]
elif os == 16:
stride_list = [2, 2, 1]
else:
raise ValueError('resnet_atrous.py: output stride=%d is not supported.' % os)
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# resnet的 block1
self.layer1 = self._make_layer(block, 64, 64, layers[0])
# resnet的 block2
self.layer2 = self._make_layer(block, 64 * block.expansion, 128, layers[1], stride=stride_list[0])
# resnet的 block3
self.layer3 = self._make_layer(block, 128 * block.expansion, 256, layers[2], stride=stride_list[1],
atrous=16 // os)
# resnet的 block4,block4的atrous为列表,里面使用了multi-grid技术
self.layer4 = self._make_layer(block, 256 * block.expansion, 512, layers[3], stride=stride_list[2],
atrous=[item * 16 // os for item in atrous])
self.layer5 = self._make_layer(block, 512 * block.expansion, 512, layers[3], stride=1,
atrous=[item * 16 // os for item in atrous])
self.layer6 = self._make_layer(block, 512 * block.expansion, 512, layers[3], stride=1,
atrous=[item * 16 // os for item in atrous])
self.layers = []
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, in_chans, out_chans, blocks, stride=1, atrous=None):
downsample = None
if atrous == None:
# 当没有设置atrous,blocks=3时,atrous=[1,1,1]
# 此时表示resnet的block1,或者block2,或者block3,或者block4内的bottleneck中的3x3卷积的膨胀系数为1,
# 膨胀系数为1,就表示没有膨胀,还是标准卷积。
atrous = [1] * blocks
elif isinstance(atrous, int):
# 当设置atrous=2,blocks=3时,atrous=[2,2,2]
# 此时表示resnet的block1,或者block2,或者block3,或者block4内的bottleneck中的3x3卷积的膨胀系数为2
atrous_list = [atrous] * blocks
atrous = atrous_list
# 如果atrous不是None,也不是一个整数,那么atrous被直接设定为[1,2,3]
# 此时表示resnet的block1,或者block2,或者block3,或者block4内的bottleneck中的3个3x3卷积的膨胀系数分别为[1,2,3]
if stride != 1 or in_chans != out_chans * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(in_chans, out_chans * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_chans * block.expansion),
)
layers = []
layers.append(block(in_chans, out_chans, stride=stride, atrous=atrous[0], downsample=downsample))
in_chans = out_chans * block.expansion
for i in range(1, blocks):
layers.append(block(in_chans, out_chans, stride=1, atrous=atrous[i]))
return nn.Sequential(*layers)
def forward(self, x):
layers_list = []
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
# 此时x为4倍下采样
layers_list.append(x)
x = self.layer2(x)
# 此时x为8倍下采样
layers_list.append(x)
x = self.layer3(x)
# 此时x为8倍或者16倍下采样,由本代码的123,125行的 stride_list决定
# stride_list[2,1,1]时,就是8倍下采样
# stride_list[2,2,1]时,就是16倍下采样
layers_list.append(x)
x = self.layer4(x)
x = self.layer5(x)
x = self.layer6(x)
# 此时x为8倍或者16倍下采样,由本代码的123,125行的 stride_list决定
# stride_list[2,1,1]时,就是8倍下采样
# stride_list[2,2,1]时,就是16倍下采样
layers_list.append(x)
# return 4个feature map,分别是block1,block2,block3,block6的feature map
return layers_list
def resnet34_atrous(pretrained=True, os=16, **kwargs):
"""Constructs a atrous ResNet-34 model."""
model = ResNet_Atrous(BasicBlock, [3, 4, 6, 3], atrous=[1, 2, 1], os=os, **kwargs)
if pretrained:
old_dict = model_zoo.load_url(model_urls['resnet34'])
model_dict = model.state_dict()
old_dict = {k: v for k, v in old_dict.items() if (k in model_dict)}
model_dict.update(old_dict)
model.load_state_dict(model_dict)
return model
def resnet50_atrous(pretrained=True, os=16, **kwargs):
"""Constructs a atrous ResNet-50 model."""
model = ResNet_Atrous(Bottleneck, [3, 4, 6, 3], atrous=[1, 2, 1], os=os, **kwargs)
if pretrained:
old_dict = model_zoo.load_url(model_urls['resnet50'])
model_dict = model.state_dict()
old_dict = {k: v for k, v in old_dict.items() if (k in model_dict)}
model_dict.update(old_dict)
model.load_state_dict(model_dict)
return model
def resnet101_atrous(pretrained=True, os=16, **kwargs):
"""Constructs a atrous ResNet-101 model."""
model = ResNet_Atrous(Bottleneck, [3, 4, 23, 3], atrous=[1, 2, 1], os=os, **kwargs)
if pretrained:
old_dict = model_zoo.load_url(model_urls['resnet101'])
model_dict = model.state_dict()
old_dict = {k: v for k, v in old_dict.items() if (k in model_dict)}
model_dict.update(old_dict)
model.load_state_dict(model_dict)
return model
from aspp import ASPP
class Config(object):
# 决定本代码的123,125行的 stride_list的取值
OUTPUT_STRIDE = 16
# 设定ASPP模块输出的channel数
ASPP_OUTDIM = 256
# Decoder中,shortcut的1x1卷积的channel数目
SHORTCUT_DIM = 48
# Decoder中,shortcut的卷积的核大小
SHORTCUT_KERNEL = 1
# 每个像素要被分类的类别数
NUM_CLASSES = 21
class DeeplabV3Plus(nn.Module):
def __init__(self, cfg, backbone=resnet50_atrous):
super(DeeplabV3Plus, self).__init__()
self.backbone = backbone(pretrained=False, os=cfg.OUTPUT_STRIDE)
input_channel = 512 * self.backbone.block.expansion
self.aspp = ASPP(in_chans=input_channel, out_chans=cfg.ASPP_OUTDIM, rate=16 // cfg.OUTPUT_STRIDE)
self.dropout1 = nn.Dropout(0.5)
self.upsample4 = nn.UpsamplingBilinear2d(scale_factor=4)
self.upsample_sub = nn.UpsamplingBilinear2d(scale_factor=cfg.OUTPUT_STRIDE // 4)
indim = 64 * self.backbone.block.expansion
self.shortcut_conv = nn.Sequential(
nn.Conv2d(indim, cfg.SHORTCUT_DIM, cfg.SHORTCUT_KERNEL, 1, padding=cfg.SHORTCUT_KERNEL // 2, bias=False),
nn.BatchNorm2d(cfg.SHORTCUT_DIM),
nn.ReLU(inplace=True),
)
self.cat_conv = nn.Sequential(
nn.Conv2d(cfg.ASPP_OUTDIM + cfg.SHORTCUT_DIM, cfg.ASPP_OUTDIM, 3, 1, padding=1, bias=False),
nn.BatchNorm2d(cfg.ASPP_OUTDIM),
nn.ReLU(inplace=True),
nn.Dropout(0.5),
nn.Conv2d(cfg.ASPP_OUTDIM, cfg.ASPP_OUTDIM, 3, 1, padding=1, bias=False),
nn.BatchNorm2d(cfg.ASPP_OUTDIM),
nn.ReLU(inplace=True),
nn.Dropout(0.1),
)
self.cls_conv = nn.Conv2d(cfg.ASPP_OUTDIM, cfg.NUM_CLASSES, 1, 1, padding=0)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x):
# 利用backbone生成block1,2,3,4,5,6,7的feature maps
layers = self.backbone(x)
# layers[-1]是block7输出的feature map相对于原图下采样了16倍
# 把block7的输出送入aspp
feature_aspp = self.aspp(layers[-1])
feature_aspp = self.dropout1(feature_aspp)
# 双线行插值上采样4倍
feature_aspp = self.upsample_sub(feature_aspp)
# layers[0],是block1输出的featuremap,相对于原图下采样的4倍,我们将它送入1x1x48的卷积中
feature_shallow = self.shortcut_conv(layers[0])
# aspp上采样4倍,变成相对于原图下采样4倍,与featue _shallow 拼接融合
feature_cat = torch.cat([feature_aspp, feature_shallow], 1)
result = self.cat_conv(feature_cat)
result = self.cls_conv(result)
result = self.upsample4(result)
return result
cfg = Config()
model = DeeplabV3Plus(cfg, backbone=resnet50_atrous)
x = torch.randn((2, 3, 128, 128), dtype=torch.float32)
y = model(x)
print(y.shape)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)