import os, sys
import numpy as np
base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(base_dir)
from dataset.mnist import load_mnist
import pickle
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def softmax(x):
if x.ndim == 2:
x = x.T
x = x - np.max(x, axis=0)
y = np.exp(x) / np.sum(np.exp(x), axis=0)
return y.T
x = x - np.max(x) # 溢出对策
return np.exp(x) / np.sum(np.exp(x))
def get_data():
(x_train, t_train), (x_test, t_test) = load_mnist(flatten=True, normalize=True, one_hot_label=False)
return x_test, t_test
def init_network():
with open('../ch03/sample_weight.pkl', 'rb') as f:
network = pickle.loads(f.read())
return network
def predict(network, x):
W1, W2, W3 = network['W1'], network['W2'], network['W3']
b1, b2, b3 = network['b1'], network['b2'], network['b3']
a1 = np.dot(x, W1) + b1
z1 = sigmoid(a1)
a2 = np.dot(z1, W2) + b2
z2 = sigmoid(a2)
a3 = np.dot(z2, W3) + b3
y = softmax(a3)
return y
if __name__ == '__main__':
x, t = get_data()
network = init_network()
batchsize = 100
accuracy_cnt = 0
for i in range(0, len(x), batchsize):
x_batch = x[i:i + batchsize]
y = predict(network, x_batch)
p = np.argmax(y, axis=1)
accuracy_cnt += np.sum(p == t[i:i + batchsize])
accuracy = accuracy_cnt / len(x)
print('accuracy', accuracy)
运行结果
accuracy 0.9352
需要在 NumPy 数组之间使用比较运算符(== )生成由 True/False 构成的布尔型数组,并计算 True 的个数。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)