参考链接:https://www.jianshu.com/p/9da54361d289
环境:
硬件:gpu(nvidia GeForce rtx 2060)
软件:keras=2.3.1
tensorflow=2.1.0
tensorboard=2.1.0
CUDA=10.0
cudnn=7.4
CUDA Driver = CUDART, CUDA Driver Version = 11.6, CUDA Runtime Version = 10.0, NumDevs = 1, Device0 = NVIDIA GeForce RTX 2060
numpy=1.16.5(这个版本有警告,估计还是不太匹配)
错误原因:keras和tensorflow及tensorboard之间的版本不匹配,模型用的是keras的,且keras的Backend使用的是tensorflow,而tensorflow有些版本里面自带的tensorflow_keras的一些属性和keras库的不完全统一。
三者之间版本匹配可查看:https://mckayward.github.io/floyd-docs/guides/environments/
解决方法一:改到匹配版本,有点难。
解决方法二:修改报错的callback.py文件,添加判断是否有’_is_graph_network’属性。我的在D:\XXXXXX\Install\anaconda3\envs\430gpu\Lib\site-packages\tensorflow_core\python\keras\callbacks.py
with context.eager_mode():
self._close_writers()
if self.write_graph:
with self._get_writer(self._train_run_name).as_default():
with summary_ops_v2.always_record_summaries():
if not model.run_eagerly:
summary_ops_v2.graph(K.get_graph(), step=0)
# summary_writable = (
# self.model._is_graph_network or # pylint: disable=protected-access
# self.model.__class__.__name__ == 'Sequential') # pylint: disable=protected-access
if hasattr(self.model, '_is_graph_network'):
summary_writable = (
self.model._is_graph_network or # pylint: disable=protected-access
self.model.__class__.__name__ == 'Sequential') # pylint: disable=protected-access
else:
summary_writable = self.model.__class__.__name__ == 'Sequential'
if summary_writable:
summary_ops_v2.keras_model('keras', self.model, step=0)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)