参考书籍:掌控python.人工智能之机器视觉 / 程晨编著
图片处理相关工具参考了csdn大佬的相关文章,如有侵权,请联系删除。
# train_model.py
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
import joblib
from produce_train_data import *
digits = load_digits()
# 以下为自制数据集加入,使用mnist数据集时注释掉下面四行
path = './train_img/train/'
data,target = image_datasets(path)
digits.data = data
digits.target = target
x_train, x_test, y_train, y_test = train_test_split(digits['data'],digits['target'],test_size=0.3,random_state=0)
mplc = MLPClassifier(max_iter=1000)
mplc.fit(x_train,y_train)
pred = mplc.predict(x_test)
print(pred==y_test)
joblib.dump(mplc,'./model/mplc.pkl')
2.模型应用
# infer.py
def infer(model_path,img):
classfier = joblib.load(model_path)
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# (1,8930)根据实际训练图片大小进行修改,将图片转换为一维数组
img = numpy.reshape(img,(1,8930))
x = str(classfier.predict(img)[0])
print(x)
return x
3.自制数据集
# produce_train_data.py
# -- coding: utf-8 --
from sklearn import datasets
import numpy as np
from PIL import Image
import os
import csv
import skimage
#读取文件夹中的图像信息,生成列表
def generate_dataset(path):
filelist = os.listdir(path)
csvfile = open("imgfile.txt", 'w')
for files in filelist:
filename = os.path.splitext(files)[0]
str1 = path + files + ' ' + filename[0] + '\n'
csvfile.writelines(str1)
csvfile.close()
return csvfile.name
#生成sklearn训练数据集
def load_imgesets(filename):
file = open(filename,'r')
data = []
target = []
data = np.array(data,dtype=float)
flag = 1
for line in file:
# 分割图像路径与类别
str = line.split(' ',1)
#读取图片转换为灰度图
#将灰度矩阵转换为一维数据
if flag == 1:
flag = 0
data = np.array(Image.open(str[0]).convert('L')).reshape(1,-1)
else:
row = np.array(Image.open(str[0]).convert('L')).reshape(1, -1)
data = np.row_stack((data, row))
target.append(str[1])
file.close()
target =np.asarray(target,dtype=int)
return data,target
def image_datasets(path):
filename = generate_dataset(path)
data,target = load_imgesets(filename)
return data,target
if __name__ == '__main__':
path = './img_new1/'
data,target = image_datasets(path)
4.图片阈值寻找工具
from __future__ import division
import cv2
import numpy as np
def nothing(*arg):
pass
icol = (0, 0, 0, 255, 255, 255)
cv2.namedWindow('colorTest')
#阈值低点
cv2.createTrackbar('lowHue', 'colorTest', icol[0], 255, nothing)
cv2.createTrackbar('lowSat', 'colorTest', icol[1], 255, nothing)
cv2.createTrackbar('lowVal', 'colorTest', icol[2], 255, nothing)
#阈值高点
cv2.createTrackbar('highHue', 'colorTest', icol[3], 255, nothing)
cv2.createTrackbar('highSat', 'colorTest', icol[4], 255, nothing)
cv2.createTrackbar('highVal', 'colorTest', icol[5], 255, nothing)
#读取图片,图片命名test1.jpg
frame = cv2.imread('test1.jpg')
while True:
lowHue = cv2.getTrackbarPos('lowHue', 'colorTest')
lowSat = cv2.getTrackbarPos('lowSat', 'colorTest')
lowVal = cv2.getTrackbarPos('lowVal', 'colorTest')
highHue = cv2.getTrackbarPos('highHue', 'colorTest')
highSat = cv2.getTrackbarPos('highSat', 'colorTest')
highVal = cv2.getTrackbarPos('highVal', 'colorTest')
#色域转换
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
#设定阈值
colorLow = np.array([lowHue,lowSat,lowVal])
colorHigh = np.array([highHue,highSat,highVal])
mask = cv2.inRange(hsv, colorLow, colorHigh)
result = cv2.bitwise_and(frame, frame, mask = mask)
#图片拼接
imgs = np.hstack([frame,result])
cv2.imshow('colorTest', imgs)
k = cv2.waitKey(5) & 0xFF
if k == 27:
break
cv2.destroyAllWindows()
5.图片变换工具
# 红色字体时使用,红色转变为白色
def red2white(img):
for x in range(img.shape[0]): # 图片的高
for y in range(img.shape[1]): # 图片的宽
px = img[x,y]
#print(px) # 这样就能得到每个点的bgr值
if img[x,y,0] < 10 and img[x,y,1] < 189 and img[x,y,2] < 209 :
img[x,y,0] = img[x,y,1] = img[x,y,2] = 0
else:
img[x,y,0] = img[x,y,1] = img[x,y,2] = 255
return img
# 将图片背景转换为黑色
def background2black(img):
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
#字体为红色时使用
#lower_color = np.array([0,115, 181])
#字体为白色时使用
lower_color = np.array([0,0, 230])
upper_color = np.array([255, 255, 255])
mask = cv2.inRange(hsv, lower_color, upper_color)
res = cv2.bitwise_and(img, img, mask=mask)
return res
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)