如何利用遥感技术获取南阳市的土地利用类型的变化情况

如何利用遥感技术获取南阳市的土地利用类型的变化情况,第1张

遥感卫星影像土地利用提取方法

变化信息直接提取法

变化信息直接提取,是对两个时相的遥感图像进行点对点的直接运算,经变化特征的发现,分类处理,获取土地利用变化信息。主要方法有4种。

图像差值法。即将一个时相的某一波段光谱灰度值减去另一时相的对应像元的光谱灰度值,较早应用的是单波段图像差值法。单波段差值图像中难以提取动态信息;对MSS7,MSS5,MSS4差值图像进行彩色合成,则可综合各个波段的动态信息,并很好地突出植被变化信息。

图像比值法。这是对两个时相多谱段数据中同名像元的光谱灰度值施以除法运算。比值法可以部分地消除阴影影响,突出某些地物间的反差,具有一定的图像增强作用。一方面,比值图像可供直接判读,提取其中的专题信息。另一方面,只要稍加逻辑变换,便可用以直接检测明显变化的环境要素。

植被指数法。是综合利用植被在红光部分的强吸收与在近红外部分的强反射特点提取植被动态信息。常见的有比值植被指数,归一化植被指数,垂直植被指数,这些指数在森林资源动态监测中使用尤其广泛。

多时相复合分类法。将两时相或多时相遥感数据复合,通过遥感分类提取变化信息。在这种方法的监督处理过程中,训练区的确定比较困难。

计算机自动分类后比较法该方法是在对比多时相的遥感图像前,先进行各时相遥感图像的单独分类"用该方法的优点是能获取各个像元的土地利用转变类型,不仅能获取变化的数量和特点,还能获取变化 的类型,并有利于减少不同时相图像因大气和传感器差异产生的误差。但是,这一方法由于受到单独分类所带来的误差影响,可能会夸大变化的程度。

目视解译法

该方法是以土地利用现状调查资料为基础,确定各地类的解译标志,在遥感图像上划出各地类界线,得到遥感分类图,再比较各时相的遥感分类图。此外,香宝提出了RS,GI S一体化,即通过遥感数字图像——人机交互判读——计算机量测汇总——数据库来提取土地利用信息的方法。 上述3种提取变化信息的方法,无论哪一种都涉及到分类方法。遥感分类方法的提高一直是遥感技术方法研究的重要领域。计算机自动分类与目视解译各有优缺点,本文把两种方法结合起来,得到了很好的效果。

1直方图法

    对于每幅图像都可作出其灰度直方图。根据直方图的形态可大致推断图像的质量。由于图像包含有大量的像元,其像元灰度值的分布应符合概率统计分布规律。假定像元的灰度值是随机分布的,那么其直方图应该是正态分布。图像的灰度值是离散变量,因此直方图表示的是离散的概率分布。若以各灰度级的像元数占总像元数的比例值为纵坐标作出图像的直方图,将直方图中各条形的最高点连成一条外轮廓线,纵坐标的比例值即为某灰度级出现的概率密度,轮廓线可近似看成图像相应的连续函数的概率分布曲线。一般来说,如果图像的直方图轮廓线越接近正态分布,则说明图像的亮度接近随机分布,适合用统计方法处理,这样的图像一般反差适中;如果直方图峰值位置偏向灰度值大的一边,则图像偏亮;如果峰值位置偏向灰度值小的一边,则图像偏暗;峰值变化过陡、过窄,则说明图像的灰度值过于集中,后3种情况均存在反差小、质量差的问题。直方图分析是图像分析的基本方法,通过有目的地改变直方图形态可改善图像的质量。

2邻域法

    对于图像中任一像元(i,j),把像元的集合{i+p,j+p}(j,p取任意整数)均称为像元的邻域,常用的邻域如图所示,分别表示中心像元的4-邻域和8-邻域。

    在图像处理过程中,某一像元处理后的值g(i,j)由处理前该像元f(i,i)的小邻域N(i,j)中的像元值确定,这种处理称为局部处理,或称为邻域处理。一般图像处理中,可根据计算目的差异,设计不同的邻域分析函数。

3卷积法

    卷积运算是在空间域内对图像进行邻域检测的运算。选定一个卷积函数,又称为“模板”,实际上是一个M×N的小图像,例如3×3、5×7、7×7等。图像的卷积运算是运用模板来实现的。模板运算方法如图所示,选定运算模板φ(m,n),其大小为M×N,从图像的左上角开始,在图像上开一个与模板同样大小的活动窗口f(m,n),使图像窗口与模板像元的灰度值对应相乘再相加。计算结果g(m,n)作为窗口中心像元新的灰度值。模板运算的公式如下(若模板的和为0,则除以1):

4频率域增强法

    在图像中,像元的灰度值随位置变化的频繁程度可用频率予以表示,这是一种随位置变化的空间频率。对于边缘、线条、噪声等特征,如河流、湖泊的边界,道路,差异较大的地表覆盖交界处等具有高的空间频率,即在较短的像元距离内灰度值变化的频率大;而均匀分布的地物或大面积的稳定结构,如植被类型一致的平原,大面积的沙漠、海面等具有低的空间频率,即在较长的像元距离内灰度值逐渐变化。例如,在频率域增强技术中,平滑主要是保留图像的低频部分抑制高频部分,锐化则是保留图像的高频部分而削弱低频部分。

5图像运算法

    对于遥感多光谱图像和经过空间配准的两幅或多幅单波段遥感图像,可进行一系列的代数运算,以达到某种增强的目的。这与传统的空间叠置分析类似,具体运算包括加法运算、差值运算、比值运算、复合指数运算等。

6非监督分类法

    是指人们事先对分类过程不做任何的先验知识,仅根据遥感影像地物的光谱特征的分布规律,随其自然地进行分类。其分类的结果,只是对不同类别进行区分,并不能确定类别属性,其类别属性是事后对各类的光谱曲线进行分析,以及与实地调查相比较后确定的。

    遥感图像上的同类地物在相同的表面结构特征、植被覆盖、光照等条件下,一般具有相同或相近的光谱特征,从而表现出某种内在的相似性,归属于同一个光谱空间区域;不同的地物,光谱信息特征不同,归属于不同的光谱空间区域。这就是非监督分类的理论基础。由于在一幅复杂的图像中,训练区有时不能包括所有地物的光谱样式,这就造成了一部分像元找不到归属。在实际工作中为了进行监督分类而确定类别和训练区的选取也是不易的,因而在开始分析图像时,用非监督分类方法来研究数据的本来结构及其自然点群的分布情况是很有价值的。

    非监督分类主要采用聚类分析的方法,以此使得属于同一类别的像元之间的距离尽可能小而不同类别上像元间的距离尽可能地大。在进行聚类分析时,首先要确定基准类别的参量。然而非监督分类中并无基准类别的先验知识可利用,因而只能先假定初始的参量,并通过预分类处理来形成集群。再由集群的统计参数来调整预制的参量,接着再聚类、再调整。如此不断地迭代,直到有关参数达到允许的范围为止。

7监督分类法

    与非监督分类不同,监督分类的最基本特点是在分类前人们对遥感图像上某些抽样区中影像地物的类别属性已有了先验知识,即先要从图像中选取所有要区分的各类地物的样本,用于训练分类器(建立判别函数)。这里的先验知识可来自于野外的实地考察,也可参照相关的其他的文字资料或图件或者直接是图像处理者本人的经验等。训练区中,具体确定各类地物各波段的灰度值,从而可确定特征参数,建立判别函数。监督分类一般是在图像中选取具有代表性的区域作为训练区,由训练区得到各个类别的统计数据,然后根据这些统计数据对整个图像进行分类,其既可采用概率判别函数,也可采用距离判别函数。

8图像分割法

    它是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究有待不断深入。

潘振祥

(河南省国土资源厅信息中心 郑州 450016)

摘 要:本文通过开展高分辨率卫星遥感影像数据(SPOT5)处理及建库技术方法研究和探索,制定了《高分辨率影像数据处理及基于遥感影像土地利用数据库建设技术要求》和《省级基于遥感影像 1∶1 万土地利用数据库标准》,制作了覆盖河南全省的 1∶1 万数字正射影像图,建立了河南省基于 SPOT 5 的 GPS 像控点图形图像数据库、高分辨率卫星影像数据库和基于影像信息土地利用数据库,为全国土地利用二次调查基础底图制作进行了有益的探索。

关键词:土地资源 卫星影像 遥感 数据库 像控点

0 引 言

随着信息技术的快速发展,卫星遥感影像处理技术得到了突破性进展,高分辨率卫星影像在土地资源调查评价、土地利用动态遥感监测、土地执法监察、土地变更调查以及大中比例尺地形图测绘等方面应用已取得显著成效。

针对河南省高分辨率遥感影像数据处理及数据库建设项目任务,项目组提出了利用 GPS 外业静态实测坐标作为影像数据校正的控制资料,制定了《高分辨率影像数据处理及基于遥感影像土地利用数据库建设技术要求》和《省级基于遥感影像 1∶1 万土地利用数据库标准》等,并根据项目任务要求,制定了切合河南实际的基于遥感影像信息的土地利用分类体系,同时,通过项目开展,制作了覆盖河南全省的 SPOT 5 数字正射影像图(DOM),并建立了河南省基于 SPOT 5的 GPS 像控点图形图像数据库,为土地利用二次调查基础底图制作进行了有益的探索。

1 影像数据处理及数据库建设技术路线

(1)多源遥感信息相结合。选取最佳波段组合的多光谱影像与高分辨率全色影像融合,生产具有高分辨率空间信息和丰富光谱信息的融合影像。

(2)GPS 像控点、基础图件(数据库)和 DEM 相结合。根据实际情况,采用 GPS 像控点,同时利用 1∶5 万 DEM 对遥感影像进行正射校正。

(3)人机交互与计算机自动提取相结合。以人机交互解译为主,进行土地分类信息提取。

(4)遥感解译与地面调查相结合。对提取的地类图斑信息进行外业验证,对在室内不确定的地类图斑,进行外业实地调查。

2 GPS 像控点图形图像数据库建立

为保证像控点选取精度,首先在 25 m 分辨率的全色影像上,按照像控点选取的技术要求,每景均匀选取了 25 个像控点,并对像控点进行了全外业 GPS 静态测量,在 MapGIS 平台下编辑像控点属性结构,建立 GPS 像控点图形图像数据库,并将像控点外业测量成果表以方式保存在属性表中。如图1所示。

图1 像控点图形图像数据库示意图

21 GPS 像控点选取

为保证像控点外业测量精度,像控点选取时,点位分布要相对均匀,特征明显,交通便利,数量足够,尽可能在全色影像上选取,尽量避开高压线、大面积水域等干扰因素。

为提高外业测量效率,将选取的待测像控点制作成“像控点外业测量成果表”,成果表包括像控点编号、点位及放大的示意图、WGS84、1954 北京、1980 年西安三套坐标和点位说明等内容。

22 GPS 像控点外业施测

像控点外业测量采用附合路线法,各像控点平均间距约 13 km,像控点与 C 级 GPS 控制点组成 GPS 控制网。GPS 像控点外业测量利用河南省 C 级 GPS 控制网成果的三套数据(分别为WGS 84、1954 北京和 1980 年西安坐标)作为起算数据,依据《全球定位系统(GPS)测量规范》,采用静态方式同步进行观测,三台套 GPS 接收机为一组,观测时段长度不少于 45 分钟,卫星高度角≥ 15°,有效观测卫星总数≥ 4 个。测量数据采用南方测绘软件进行基线解算、平差处理并进行高程拟合,最后解算出像控点基于三套坐标系统的三套数据和拟合高程。

23 GPS 像控点图形图像数据库的建立

GPS 像控点图形图像数据库以河南省 1∶50 万地理底图作为工作底图,输入像控点空间坐标,并采集像控点属性与图形信息,建立数学基准统一的像控点图形图像文件。像控点图形图像信息,除像控点所具有的地理坐标信息之外,还包括与待纠正影像相关的特征地物的纹理信息、分辨率信息等。

3 影像数据处理

影像数据处理包括卫星影像全色数据与多光谱数据的配准、融合和影像数据正射校正、镶嵌及正射影像图(DOM)的制作等。本项目所使用到的 SPOT 5 数据是由视宝公司提供的 1A 级数据,只经过了探测器的均衡化处理,为了进行多元数据的复合,制作正射影像图,必须对图像进行正射校正,建立地理坐标。影像数据处理技术流程如图 2 所示。

图2 影像数据处理技术流程

31 影像配准

本项目使用的单景多光谱数据与全色数据是同步接收到的,其图形的几何相关性较好,多光谱数据与全色配准难度小、精度高,因此采用相对配准的方法,SPOT 5 多光谱数据波段组合采用 XS2(红)、XS3(绿)、XS1(蓝)形式,影像重采样间隔为 25 m,重采样方法采用双线性内插,以景为配准单元,以 SPOT 5 全色数据为配准基础,均匀选取配准控制点,对接收侧视角较大,地势起伏对配准影响较为严重的区域相应增加控制点密度,将 SPOT 5 多光谱数据与之精确配准,并随机选择配准后全色与多光谱数据上的同名点进行检查,以确保数据的配准精度。

32 影像融合

图像融合处理采用最基本的乘积组合算法直接对两种空间分辨率的遥感数据进行合成,融合后图像则采用直方图调整、USM 锐化、彩色平衡、色度饱和度调整和反差增强等手段,以使整景影像色彩均匀、明暗程度适中、清晰,增强专题信息,特别是加强纹理信息。

33 影像正射校正

影像正射校正采用 ERDAS 的 LPS 正射模块,利用 SPOT 5 物理模型,每景 25 个像控点均匀分布于整景影像,各相邻景影像重叠区有 2 个以上共用点。正射校正以实测点和 1∶5 万 DEM为校正基础,以景为单元,对融合后的数据进行正射校正,采样间隔为 25 m。

34 影像镶嵌

影像镶嵌采用 ERDAS 的 LPS 正射模块中批量处理模块,相邻两幅影像,均采集了两个以上共用点,大大提高了影像镶嵌精度。为验证镶嵌精度,以县(市、区)为单位,在其镶嵌区随机选择 25 个以上检查点进行镶嵌精度检查。

35 数字正射影像图制作

数字正射影像图(DOM)制作采用 Image Info 工具,按照 1∶1 万标准分幅进行裁切,覆盖完整的县级行政辖区。图幅整饰依据《高分辨率影像数据处理及数据库建设技术要求》,利用MapGIS 数据库平台,按照 1954 北京坐标系、1985 年国家高程基准的生成 1∶1 万标准分幅图幅整饰。

4 创新成果

项目组在圆满完成项目任务的前提下,结合项目进展和土地管理需要,创造性地开展工作。总结项目进展和取得的成果,创新成果主要体现在:

(1)影像校正控制点 GPS 外业实测数据作为影像校正控制资料,改变了以往利用地形图、土地利用现状图(数据库)作为控制资料的传统方式,极大地提高了影像校正精度,节省了项目投入经费。

覆盖河南全省 1∶1 万标准分幅地形图共计 6565 幅,而实有地形图仅 5600 余幅,项目组在征求部课题组同意的前提下,提出采用 GPS 外业实测控制点作为影像校正控制资料的思路。基于这一思路,项目组进行了一系列研究和论证,制定了 GPS 外业测量技术要求,并对覆盖全省的每景 SPOT 5 卫星影像相对均匀地选取了 25 个控制点,相邻景影像不少于 2 个共用控制点的原则,全省共选取影像校正控制点 1421 个,GPS 大地控制 C 级点 94 个。根据影像数据接收时间和项目进度,共分 13 个测区,对所有控制点采用附和路线法进行了静态测量,分别计算出各控制点和检查点的 WGS84、1954 北京和 1980 年西安三套坐标。

(2)河南省像控点图形图像数据库的建立,为今后河南全省土地利用遥感监测、卫片执法监察等提供了技术保障。

为使外业测量成果长期保存和今后使用,项目组在项目任务之外,在 MapGIS 平台上,基于河南省 1∶50 万地理底图,建立了 GPS 像控点图形图像数据库。GPS 像控点图形图像数据库的建立,不仅满足 SPOT 5_25 m 高分辨率卫星影像的校正精度要求,同时为今后河南全省土地利用遥感监测、卫片执法检查、矿山环境监测等奠定了基础。

(3)高分辨率影像数据大区域整体正射校正和镶嵌处理技术的探索,为影像数据批处理技术的推广进行了有益的探索。

由于本次试点项目涉及的范围广、影像处理工作量大,因此,项目组在保证影像纠正精度的前提下,为提高工作效率,探索和使用了遥感影像专业处理软件 ERDAS 的 LPS 模块提供的大区域整体正射纠正和影像镶嵌处理功能,达到了较好的应用效果。

鉴于本次试点项目所使用的影像数据均为同步接收的 SPOT 5 多光谱与全色数据,其图形的几何相关性较好,多光谱数据与全色配准难度小、精度高,因此,影像数据处理采用先单景融合、后大区域整体正射校正、最后进行大区域镶嵌配准的技术流程进行影像处理。

正射纠正采用 ERDAS 的 LPS 批量正射模块。纠正采用 SPOT 5 物理模型,控制点均匀分布于整景影像,每景控制点个数为 25 个,各相邻影像重叠区有 2 个以上共用点。正射纠正以 GPS外业实测控制点和预处理的河南省 1∶5 万 DEM 为纠正基础 , 对 SPOT 5 融合数据进行批量纠正,采样间隔为 25 m。影像镶嵌采用的是 ERDAS 的 LPS 批处理模块,由于各相邻景影像均采集了两个以上的共用点,大大提高了影像镶嵌精度。

(4)基于遥感影像信息土地利用分类标准体系的制定,为国家和省级快速掌握和提取土地利用变化信息进行了有益的探索。

项目组根据部课题组要求及国家和省土地管理工作需要,结合 SPOT 5 卫星影像光谱特征和纹理信息,经充分研究和论证,制定了切合河南实际、满足“高分辨率影像数据处理及数据库建设”试点项目需要的基于遥感影像信息的土地利用分类标准,该标准中将土地利用类型分为农用地、建设用地和未利用地等 3 个大类,耕地、园林地、其他农用地、城市用地、建制镇用地、农村居民点用地、铁路用地、公路用地、其他建设用地、未利用地等 10 个二级类,此外,根据个别地类特点,又分别从农用地、建设用地和未利用地中单独划分出公路林带、农业水利用地、水利设施用地、未利用水面和黄河滩地等 5 个三级类,分类标准与现有的土地利用分类体系协调、一致,符合国土资源土地分类标准体系。

(5)基于遥感影像土地利用数据库建设,为国家和省土地宏观管理提供了现势性较强的土地利用电子数据,为国内同类工作的开展提供了技术依据。

考虑到国家和省级土地宏观管理的需要,根据项目制定的“基于遥感影像土地利用分类体系”,结合中地公司 MapGIS 土地利用数据库管理系统框架结构,项目组在 MapGIS 数据库管理系统平台的基础上,分别制定了《高分辨率影像数据处理及数据库建设技术要求》和《基于遥感影像 1∶1 万土地利用数据库标准》等,并在标准中明确了基于遥感影像的土地分类、文件命名规则、数据分层格式及要求等,保证了数据标准和数据格式的一致性及数据库建设质量,为国家和省提供了翔实的土地利用现势数据。

5 结 语

随着遥感技术和计算机技术的飞速发展,高分辨率遥感影像数据在土地管理工作中的应用越来越普遍,同时,遥感影像数据处理的技术手段也越来越科学、越来越先进,尤其是全国第二次土地调查工作的全面开展,将遥感影像在土地管理方面的应用推到一个前所未有的水平,因此,如何在影像数据处理过程中尽可能减少人力和财力投入已显得尤为重要。本项目针对上述问题,在科研与生产过程中,提出的采用 GPS 外业实测控制点作为影像校正控制资料、GPS 像控点图形图像数据建库及基于国家和省级土地管理需要而提出的基于遥感影像信息土地利用数据库标准等,进行了较好的诠释,为今后同类工作的开展进行了有益的探索。

参 考 文 献

常庆瑞,等2004遥感技术导论[M] 北京:科学出版社

陈述彭,等1998遥感信息机理研究[M]北京:科学出版社

党安荣,等2003ERDAS IMAGING 遥感图像处理方法[M]北京:清华大学出版社

汤国安,等2004遥感数字影像处理[M] 北京:科学出版社

徐柏清1988正射投影技术与影像地图[M]北京:测绘出版社

尤淑撑,刘顺喜2002GPS 在土地变更调查中的应用研究[J]测绘通报(5):1~3

张继贤,等2000图形图像控制点库及应用[J]测绘通报(1)

(原载《测绘通报》2008 年第 10 期)

河南省像控点图形图像数据库的建立,为今后河南全省土地利用遥感监测、卫片执法监察等提供了技术保障。

为使外业测量控制点资料长期保存和方便今后使用,项目组在项目进展任务要求之外,在MapGIS 平台上,基于河南省 1∶50 万地理底图,建立了河南省 GPS 影像校正控制点(像控点)图形图像数据库。像控点属性表内容主要有:覆盖项目区内的 SPOT 5 影像数据位置、时相等信息,各控制点点位及相关属性信息,其属性信息包括:各控制点标准编号、景内编号、外业测量编号、行政区、行政代码、图幅号(1∶1 万)、三套坐标、概略经纬度、入库时间、分辨率、数据源、数据源获取时间、测量成果表、外业实地照片、测量单位、测量日期等信息。

GPS 像控点图形图像数据库的建立,不仅满足 SPOT 5_25 m 高分辨率卫星影像的校正精度要求,同时为今后河南全省土地利用遥感监测、卫片执法检查、矿山环境监测等类似工作的开展奠定了基础,极大地降低了投入成本,提高了影像数据处理的效率后精度。

一、资料的收集与分析 遥感制图所需的资料范围较广,一般需要收集如下资料

1、编制地区的普通地图 、 (1)比例尺最好与成图比例尺一致或稍大于成图比例尺 (2)选用面积变形较小的地图投影

2、遥感资料 后几年的影像 在选择遥感图像时,要遵循以下几个原则:

(1)空间分辨率及制图比例尺的选择 空间分辨率指像素 代表的地面范围的大小,即扫描仪的瞬时视场或地面物体能分辨的最小单元。 空间分辨率指像素所代表的地面范围的大小,即扫描仪的瞬时视场或地面物体能分辨的最小单元的地面范围的大小 由于遥感制图是利用遥感图像来提取专题制图信息的,因此在选择遥感图像空间分辨率时要考虑以 下两点要素:一是判读目标的最小尺寸,二是地图成图比例尺。遥感图像的空间分辨率与地图比例尺有 密切关系:空间分辨率越高图像可放大的倍数越大,地图的成图比例尺也越大。 遥感图像的比例尺应与成图比例尺一致或象片比例尺稍大于成图比例尺,这样可以避免成图比例尺 大尺度变换的繁琐技术问题。但对于专题要素的判读、分类、描绘来说,往往要选择大于地图比例尺的 象片为宜。

(2)波谱分辨率与波段的选择 波谱分辨率是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔。间隔越小,分辨率越高。 波谱分辨率是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔。间隔越小,分辨率越高。 是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔 波谱分辨率,是由传感器所使用的波段数目,也就是选择的通道数,以及波段的波长和宽度所决定。各 遥感器波普分辨率在设计时, 都是有针对性的, 多波段的传感器提供了空间环境不同的信息。 TM 为例: 以 TM1 蓝波段:对叶绿素和夜色素浓度敏感,用于区分土壤与植被、落叶林与针叶林、近海水域制图。 TM2 绿波段:对无病害植物叶绿素反射敏感 TM3 红波段:对叶绿素吸收敏感,用于区分植物种类。 TM4 近红外波段:对无病害植物近红外反射敏感,用于生物量测定及水域判别。 TM5 中红外波段:对植物含水量和云的不同反射敏感,可判断含水量和雪、云。 TM6 远红外波段:作温度图,植物热强度测量 TM 图象的性质 波段 1 2 3 4 5 6 7 光谱范围 (微米) 045—052 052—060 063—069 076—090 155—175 104—125 208—235 光谱性质 蓝 绿 红 近红外 中(近)红外 热(中)红外 中红外 地面分辨 率(米) 30 30 30 30 30 120 30 主 要 应 用 地壤与植被分类 健康植物的绿色反射率 探测不同植物的叶绿素吸收 生物量测量,水体制图 植物湿度测量,区分云与雪 植物热强度测量,其它热制图 水热法制图,地质采矿 包括航空象片、卫星象片及它们的底片和磁带、航空象片镶辑图、若为动态监测还需要前

(3)时间分辨率与时相的选择 遥感图像是某一瞬间地面实况的记录,而地理现象是变化、发展的。因此,在一系列按时间序列成像的 遥感图像 多时相遥感图像中,必然存在着最能揭示地理现象本质的“最佳时相”图像 把传感器对同一目标进行重复探测时, 相邻两次探测的时间间隔称为遥感图像的时间分辨率。 Landsat 如 1、2、3 的图像最高时间分辨率为 18 天,Landsat4、5、7 为 16 天,SPOT-4 为 26 天,而静止气象卫星的 时间分辨率仅为半小时。 遥感图像的时间分辨率对动态监测尤为重要。如:天气预报、灾害监测等需要短周期的时间分辨率,因 此常以“小时”为单位。植物、作物的长势监测、估产等需要用“旬”或“日”为单位。 显然只有气象卫星的图像信息才能满足这种要求;研究植被的季相节律、农作物的长势,目前以选择 landsat-TM 或 SPOT 遥感信息为宜。

3、其他资料 土地现状图、土地利用报告 、编图地区的统计资料、政府文件、地方志等

二、确立专题要素的分类系统

三、遥感图像处理

1、遥感图像处理方法的选择 、

(1)光学处理法 常用的方法有:假彩色合成(加色法、减色法)、等密度分割、图像相关掩膜。

(2)数字图像校正 方法:辐射校正、几何校正

(3)数字图像增强的方法:

A 对比度变换

B空间滤波:是指在图像空间或空间频率对输入图像应用若干滤波函数而获得改进的输出图像的技术。 空间滤波 常用的空间滤波的方法有:平滑和锐化。 :平滑和锐化 平滑:图像中出现某些亮度变化过大的区域,或出现不该有的亮点(“噪声”)时,采用平滑的方法可以减小变化, 平滑 使亮度平缓或去掉不必要的“噪声”点。具体方法有:均值平滑、中值滤波 均值平滑、 均值平滑 锐化:为了突出图像的边缘、线状目标或某些亮度变化率大的部分,可采用锐化方法。常用的几种方法:罗伯特 锐化 梯度、索伯尔梯度、拉普拉斯算法、定向检测

C彩色变换 彩色变换就是将黑白图像转换成彩色图像的方法。主用的方法有单波段彩色变换、多波段彩色变换、 彩色变换: 彩色变换 HLS 变换等。

D图像运算

E多光谱变换 多光谱变换: 多光谱变换 两幅或多幅单波段影像,完成空间配准后,通过一系列运算,可以实现图像增强,达到提取某些信息 或去掉某些不必要信息的目的。方法:差值运算、比值运算 多光谱变换就是指用某种变换把信息集中于较少(一般为 3 个)波段内。常用的方法有:主成分分 主成分分 变换) 缨帽变换( 、缨帽变换 变换) 、沃尔什—哈达玛变换、傅立叶变换、植被指数变换、斜变 析(K-L 变换) 缨帽变换(K-T 变换) 、 换、余弦变换等等。 主成分分析( 变换) 主成分分析(K-L 变换)的主要特性有二: a.能够把原来多个波段中的有用信息尽量集中到数目尽可能少的新的组分图像中。 b.还能够使新的组分图像中的组分之间互不相关,也就是说各个组分包含的信息内容是不重叠的。 K-L 变换的缺点 的缺点是不能排除无用以至有碍的噪声和干扰因素。 的缺点 缨帽变换( 变换) :它是 Kauth 和 Thomas(1976 年)通过分析 MSS 图像反映农作物或植被生长过程的数据结 缨帽变换(K-T 变换) 构后,提出的正交线性变换。 K-T 变换的特点:a.能够把原来多个波段中的有用信息压缩到较少的新的波段内。 b.要求新波段正交或近似正交。 c.分离或削弱无用的干扰因素。 (4)多源信息复合 )

四、遥感图像的判读

1、遥感图像目视判读 遥感图像的判读标志:

遥感图像的判读标志:是指图像上反映出的地物和现象的图像特征,是以深浅不同的黑白色调(灰阶) 或不同的色彩构成的各种各样图形现象出来的。 遥感图像的判读标志可概括为:颜色、形状、空间位置 :颜色、形状、 颜色——色调、 颜色、 颜色——色调、 颜色、阴影 ——色调 形状——形状、纹理、 大小 、 形状 、 位置——位置、图型、相关布局 位置

2、目视解译的方法

(1)直接判读法(2)对比分析法 (3)信息复合法(4)综合推理法(5)地理相关分析法 (1)直接判读法:是根据遥感影像目视判读直接标志,直接确定目标地物属性与范围的一种方法。 直接判读法 例如,在可见光黑白像片上,水体对光线的吸收率强,反射率低,水体呈现灰黑到黑色,根据色调可以从影像 上直接判读出水体,根据水体的形状则可以直接分辨出水体是河流,或者是湖泊。在 MSS4、5、7 三波段假彩色影 像上,植被颜色为红色,根据地物颜色色调,可以直接区别植物与背景。 (2)对比分析法 此方法包括同类地物对比分析法、空间对比分析法和时相动态对比法。 A同类地物对比分析法 同类地物对比分析法是在同一景遥感影像上,由已知地物推出未知目标地物的方法。 同类地物对比分析法 B空间对比分析法 空间对比分析法是根据待判读区域的特点,选择另一个熟悉的与遥感图像区域特征类似的影像,将两个影像相互 空间对比分析法 对比分析,由已知影像为依据判读未知影像的一种方法。 C时相动态对比法,是利用同一地区不同时间成像的遥感影像加以对比分析,了解同一目标地物动态变化的一种解 时相动态对比法 译方法。 (3)信息复合法:利用透明专题图或者透明地形图与遥感图像重合,根据专题图或者地形图提供的多种辅助信息, 信息复合法 识别遥感图像上目标地物的方法。 (4)综合推理法:综合考虑遥感图像多种解译特征,结合生活常识,分析、推断某种目标地物的方法。 综合推理法 (5)地理相关分析法:根据地理环境中各种地理要素之间的相互依存,相互制约的关系,借助专业知识,分析推断 地理相关分析法 某种地理要素性质、类型、状况与分布的方法。

3、目视解译的基本步骤 (1)准备工作 •选择合适波段与恰当时相的遥感影像 •相关专题地图的准备 •工具材料准备 •熟悉地理概况 •确定专题分类系统 (2)室内初步解译与判读区的野外考察 室内建立初步判读标志 •初步解译的主要任务是掌握解译区域特点,确立典型解译样区,建立目视解译标志,探索解译方法,为全面解译 奠定基础。 •在室内初步解译的工作重点是建立影像解译标准,为了保证解译标志的正确性和可靠性,必须进行解译区的野外 调查。野外调查之前,需要制定野外调查方案与调查路线。 野外考察验正判读标志 在野外调查中,为了建立研究区的判读标志,必须做大量认真细致的工作,填写各种地物的判读标志登记表, 以作为建立地区性的判读标志的依据。在此基础上,制订出影像判读的专题分类系统,根据目标地物与影像特征之 间的关系,通过影像反复判读和野外对比检验,建立遥感影像判读标志。 (3)室内详细判读 在详细判读过程中,要及时将解译中出现的疑难点、边界不清楚的地方和有待验证的问题详细记录下来,留待野 外验证与补判阶段解决。 (4)野外验证与补判 野外验证指再次到遥感影像判读区去实地核实解译的结果。主要内容包括两方面: •检验专题解译中图斑的内容是否正确。 •验证图斑界线是否定位准确,并根据野外实际考察情况修正目标地物的分布界线。 (5)目视解译成果的转绘与制图 遥感图像目视判读成果,一般以专题图或遥感影像图的形式表现出来。

五、遥感图像计算机解译

图像分类方法 监督分类

1(1) 最小距离法 最小距离法(minimum distance classifier) •以特征空间中的距离作为像素分类的依据。 •在遥感图象上对每一类别选取一个具有代表意义的统计特征量;计算待分像元与已知类别之间的距离,将其归 属于距离最小的一类。 •最小距离分类法原理简单,分类精度不很高,但计算速度快,它可以在快速浏览分类概况中使用。

(2) 分级切割分类法 分级切割分类法(multi-level slice classifier) 多级切割法(multi-level slice classifier)是根据设定在各轴上的值域分割多维特征空间的分类方法。

(3) 特征曲线窗口法 •特征曲线窗口法分类的依据是:相同的地物在相同的地域环境及成像条件下,其特征曲线是相同或相近的,而不 同地物的特征曲线差别明显。 •特征曲线窗口法分类的效果取决于特征参数的选择和窗口大小。各特征参数窗口大小的选择可以不同,它要根据 地物在各特征参数空间里的分布情况而定。

(4) 最大似然法 最大似然法(maximum likelihood classifier) •地物图象可以以其光谱特征向量 X 作为亮度在光谱特征空间中找到一个相应的特征点,来自于同类地物的各种特 征点在特征空间中将形成一种属于某种概率分布的集群。 • 判别某一特征点类属的合理途径是对其落进不同类别集群中的条件概率进行比较, 相应于条件概率大的那个类别, 应是该特征点的归属。

2、监督分类步骤

(1)选择有代表性的训练场,确定各类地物的范围界线。

(2)对各类地物光谱值统计,提取各地物的数值特征。

(3)确定分类判别函数:最小距离法、马氏距离法等。

(4)分类参数、阈值的确定;各类地物像元数值的分布都围绕一个中心特征值,散布在空间的一定范围,因此需要 给出各类地物类型阈值,限定分布范围,构成分类器。

(5)分类:利用分类器分类。

(6)检验:对初步分类结果精度进行检验(分类精度、面积精度、位置精度等) 对分类器进行调整。

(7)待分类影象分类。

(8)分类结果的矢量化。

非监督分类 前提:遥感影象上同类物体在同样条件下具有相同的光谱信息特征,依靠影象上不同类地物光谱信息(或纹理信息) 进行特征提取,再统计特征的差别来达到分类的目的,最后对已分出的个别类进行确认。 非监督分类方法是在没有先验类别(训练区)作为样本的条件下,即事先不知道类别特征,主要根据像元间相似度 非监督分类方法 的大小进行归类合并(将相似度大的像元归为一类)的方法。主要有: (1)分级集群法(2)动态聚类法

第二节 从影像生成专题地图

一、目视解释的专题地图

(1)影像预处理 包括遥感数据的图像校正、图像增强,有时还需要实验室提供监督或非监督分类的图像。

(2)目视解译 经过建立影像判读标志,野外判读,室内解译,得到绘有图斑的专题解译原图。

(3)地图概括 按比例尺及分类的要求,进行专题解译原图的概括。专题地图需要正规的地理底图,所以地图概括的同时也进行图斑向地理底图的转绘。

(4)地图整饰 在转绘完专题图斑的地理底图上进行专题地图的整饰工作。

二、数字图像处理的专题制图

(1)影像预处理 同目视解译类似,影响经过图像校正、图像增强,得到供计算机分类用的遥感影像数据。

(2)按专题要求进行影像分类。

(3)专题类别的地图概括 包括在预处理中消除影像的孤立点,依成图比例尺对图斑尺寸的限制进行栅格影像的概括。

(4)图斑的栅格/矢量变换。

(5)与地理底图叠加,生成专题地图。

三、遥感系列制图

系列地图,简单说就是在内容上和时间上有关联的一组地图。我们所讨论的系列地图,是指根据共同的制图目的,利用同一的制图信息源,按照统一的设计原则,成套编制的遥感专题地图。

地理底图的编制程序:采用常规的方法编制地理底图时,首先选择制图范围内相应比例尺的地形图,进行展点、镶嵌、照像,制成地图薄膜片,然后将膜片蒙在影像图上,用以更新地形图的地理要素。经过地图概括,最后制成供转绘专题影像图的地理底图,其比例尺与专题影响图相同。

遥感系列制图的基本要求

1统一信息源

2统一对制图区域地理特征的认识

3制定统一的设计原则

4按一定的规则顺序成图

常用的遥感数据的专题分类方法有多种,从分类判别决策方法的角度可以分为统计分类器、神经网络分类器、专家系统分类器等;从是否需要训练数据方面,又可以分为监督分类器和非监督分类器。

一、统计分类方法

统计分类方法分为非监督分类方法和监督分类方法。非监督分类方法不需要通过选取已知类别的像元进行分类器训练,而监督分类方法则需要选取一定数量的已知类别的像元对分类器进行训练,以估计分类器中的参数。非监督分类方法不需要任何先验知识,也不会因训练样本选取而引入认为误差,但非监督分类得到的自然类别常常和研究感兴趣的类别不匹配。相应地,监督分类一般需要预先定义分类类别,训练数据的选取可能会缺少代表性,但也可能在训练过程中发现严重的分类错误。

1非监督分类器

非监督分类方法一般为聚类算法。最常用的聚类非监督分类方法是 K-均值(K-Means Algorithm)聚类方法(Duda and Hart,1973)和迭代自组织数据分析算法(ISODATA)。其算法描述可见于一般的统计模式识别文献中。

一般通过简单的聚类方法得到的分类结果精度较低,因此很少单独使用聚类方法进行遥感数据专题分类。但是,通过对遥感数据进行聚类分析,可以初步了解各类别的分布,获取最大似然监督分类中各类别的先验概率。聚类分析最终的类别的均值矢量和协方差矩阵可以用于最大似然分类过程(Schowengerdt,1997)。

2监督分类器

监督分类器是遥感数据专题分类中最常用的一种分类器。和非监督分类器相比,监督分类器需要选取一定数量的训练数据对分类器进行训练,估计分类器中的关键参数,然后用训练后的分类器将像元划分到各类别。监督分类过程一般包括定义分类类别、选择训练数据、训练分类器和最终像元分类四个步骤(Richards,1997)。每一步都对最终分类的不确定性有显著影响。

监督分类器又分为参数分类器和非参数分类器两种。参数分类器要求待分类数据满足一定的概率分布,而非参数分类器对数据的概率分布没有要求。

遥感数据分类中常用的分类器有最大似然分类器、最小距离分类器、马氏距离分类器、K-最近邻分类器(K-Nearest neighborhood classifier,K-NN)以及平行六面体分类器(parallelepiped classifier)。最大似然、最小距离和马氏距离分类器在第三章已经详细介绍。这里简要介绍 K-NN 分类器和平行六面体分类器。

K-NN分类器是一种非参数分类器。该分类器的决策规则是:将像元划分到在特征空间中与其特征矢量最近的训练数据特征矢量所代表的类别(Schowengerdt,1997)。当分类器中 K=1时,称为1-NN分类器,这时以离待分类像元最近的训练数据的类别作为该像元的类别;当 K >1 时,以待分类像元的 K 个最近的训练数据中像元数量最多的类别作为该像元的类别,也可以计算待分类像元与其 K 个近邻像元特征矢量的欧氏距离的倒数作为权重,以权重值最大的训练数据的类别作为待分类像元的类别。Hardin,(1994)对 K-NN分类器进行了深入的讨论。

平行六面体分类方法是一个简单的非参数分类算法。该方法通过计算训练数据各波段直方图的上限和下限确定各类别像元亮度值的范围。对每一类别来说,其每个波段的上下限一起就形成了一个多维的盒子(box)或平行六面体(parallelepiped)。因此 M 个类别就有M 个平行六面体。当待分类像元的亮度值落在某一类别的平行六面体内时,该像元就被划分为该平行六面体代表的类别。平行六面体分类器可以用图5-1中两波段的遥感数据分类问题来表示。图中的椭圆表示从训练数据估计的各类别亮度值分布,矩形表示各类别的亮度值范围。像元的亮度落在哪个类别的亮度范围内,就被划分为哪个类别。

图5-1 平行六面体分类方法示意图

3统计分类器的评价

各种统计分类器在遥感数据分类中的表现各不相同,这既与分类算法有关,又与数据的统计分布特征、训练样本的选取等因素有关。

非监督聚类算法对分类数据的统计特征没有要求,但由于非监督分类方法没有考虑任何先验知识,一般分类精度比较低。更多情况下,聚类分析被作为非监督分类前的一个探索性分析,用于了解分类数据中各类别的分布和统计特征,为监督分类中类别定义、训练数据的选取以及最终的分类过程提供先验知识。在实际应用中,一般用监督分类方法进行遥感数据分类。

最大似然分类方法是遥感数据分类中最常用的分类方法。最大似然分类属于参数分类方法。在有足够多的训练样本、一定的类别先验概率分布的知识,且数据接近正态分布的条件下,最大似然分类被认为是分类精度最高的分类方法。但是当训练数据较少时,均值和协方差参数估计的偏差会严重影响分类精度。Swain and Davis(1978)认为,在N维光谱空间的最大似然分类中,每一类别的训练数据样本至少应该达到10×N个,在可能的条件下,最好能达到100×N以上。而且,在许多情况下,遥感数据的统计分布不满足正态分布的假设,也难以确定各类别的先验概率。

最小距离分类器可以认为是在不考虑协方差矩阵时的最大似然分类方法。当训练样本较少时,对均值的估计精度一般要高于对协方差矩阵的估计。因此,在有限的训练样本条件下,可以只估计训练样本的均值而不计算协方差矩阵。这样最大似然算法就退化为最小距离算法。由于没有考虑数据的协方差,类别的概率分布是对称的,而且各类别的光谱特征分布的方差被认为是相等的。很显然,当有足够训练样本保证协方差矩阵的精确估计时,最大似然分类结果精度要高于最小距离精度。然而,在训练数据较少时,最小距离分类精度可能比最大似然分类精度高(Richards,1993)。而且最小距离算法对数据概率分布特征没有要求。

马氏距离分类器可以认为是在各类别的协方差矩阵相等时的最大似然分类。由于假定各类别的协方差矩阵相等,和最大似然方法相比,它丢失了各类别之间协方差矩阵的差异的信息,但和最小距离法相比较,它通过协方差矩阵保持了一定的方向灵敏性(Richards,1993)。因此,马氏距离分类器可以认为是介于最大似然和最小距离分类器之间的一种分类器。与最大似然分类一样,马氏距离分类器要求数据服从正态分布。

K-NN分类器的一个主要问题是需要很大的训练数据集以保证分类算法收敛(Devijver and Kittler,1982)。K-NN分类器的另一个问题是,训练样本选取的误差对分类结果有很大的影响(Cortijo and Blanca,1997)。同时,K-NN分类器的计算复杂性随着最近邻范围的扩大而增加。但由于 K-NN分类器考虑了像元邻域上的空间关系,和其他光谱分类器相比,分类结果中“椒盐现象”较少。

平行六面体分类方法的优点在于简单,运算速度快,且不依赖于任何概率分布要求。它的缺陷在于:首先,落在所有类别亮度值范围之外的像元只能被分类为未知类别;其次,落在各类别亮度范围重叠区域内的像元难以区分其类别(如图5-1所示)。

各种统计分类方法的特点可以总结为表5-1。

二、神经网络分类器

神经网络用于遥感数据分类的最大优势在于它平等地对待多源输入数据的能力,即使这些输入数据具有完全不同的统计分布,但是由于神经网络内部各层大量的神经元之间连接的权重是不透明的,因此用户难以控制(Austin,Harding and Kanellopoulos et al,1997)。

神经网络遥感数据分类被认为是遥感数据分类的热点研究领域之一(Wilkinson,1996;Kimes,1998)。神经网络分类器也可分为监督分类器和非监督分类器两种。由于神经网络分类器对分类数据的统计分布没有任何要求,因此神经网络分类器属于非参数分类器。

遥感数据分类中最常用的神经网络是多层感知器模型(multi-layer percep-tron,MLP)。该模型的网络结构如图5-2所示。该网络包括三层:输入层、隐层和输出层。输入层主要作为输入数据和神经网络输入界面,其本身没有处理功能;隐层和输出层的处理能力包含在各个结点中。输入的结构一般为待分类数据的特征矢量,一般情况下,为训练像元的多光谱矢量,每个结点代表一个光谱波段。当然,输入结点也可以为像元的空间上下文信息(如纹理)等,或多时段的光谱矢量(Paola and Schowengerdt,1995)。

表5-1 各种统计分类器比较

图5-2 多层感知器神经网络结构

对于隐层和输出层的结点来说,其处理过程是一个激励函数(activation function)。假设激励函数为f(S),对隐层结点来说,有:

遥感信息的不确定性研究

其中,pi为隐层结点的输入;hj为隐层结点的输出;w为联接各层神经之间的权重。

对输出层来说,有如下关系:

遥感信息的不确定性研究

其中,hj为输出层的输入;ok为输出层的输出。

激励函数一般表达为:

遥感信息的不确定性研究

确定了网络结构后,就要对网络进行训练,使网络具有根据新的输入数据预测输出结果的能力。最常用的是后向传播训练算法(Back-Propagation)。这一算法将训练数据从输入层进入网络,随机产生各结点连接权重,按式(5-1)(5-2)和(5-3)中的公式进行计算,将网络输出与预期的结果(训练数据的类别)相比较并计算误差。这个误差被后向传播的网络并用于调整结点间的连接权重。调整连接权重的方法一般为delta规则(Rumelhart,et al,1986):

遥感信息的不确定性研究

其中,η为学习率(learning rate);δk为误差变化率;α为动量参数。

将这样的数据的前向和误差后向传播过程不断迭代,直到网络误差减小到预设的水平,网络训练结束。这时就可以将待分类数据输入神经网络进行分类。

除了多层感知器神经网络模型,其他结构的网络模型也被用于遥感数据分类。例如,Kohonen自组织网络被广泛用于遥感数据的非监督聚类分析(Yoshida et al,1994;Schaale et al,1995);自适应共振理论(Adaptive Resonance Theory)网络(Silva,S and Caetano,M1997)、模糊ART图(Fuzzy ART Maps)(Fischer,MM and Gopal,S,1997)、径向基函数(骆剑承,1999)等也被用于遥感数据分类。

许多因素影响神经网络的遥感数据分类精度。Foody and Arora(1997)认为神经网络结构、遥感数据的维数以及训练数据的大小是影响神经网络分类的重要因素。

神经网络结构,特别是网络的层数和各层神经元的数量是神经网络设计最关键的问题。网络结构不但影响分类精度,而且对网络训练时间有直接影响(Kavzoglu and Mather,1999)。对用于遥感数据分类的神经网络来说,由于输入层和输出层的神经元数目分别由遥感数据的特征维数和总的类别数决定的,因此网络结构的设计主要解决隐层的数目和隐层的神经元数目。一般过于复杂的网络结构在刻画训练数据方面较好,但分类精度较低,即“过度拟合”现象(over-fit)。而过于简单的网络结构由于不能很好的学习训练数据中的模式,因此分类精度低。

网络结构一般是通过实验的方法来确定。Hirose等(1991)提出了一种方法。该方法从一个小的网络结构开始训练,每次网络训练陷入局部最优时,增加一个隐层神经元,然后再训练,如此反复,直到网络训练收敛。这种方法可能导致网络结构过于复杂。一种解决办法是每当认为网络收敛时,减去最近一次加入的神经元,直到网络不再收敛,那么最后一次收敛的网络被认为是最优结构。这种方法的缺点是非常耗时。“剪枝法”(pruning)是另一种确定神经网络结构的方法。和Hirose等(1991)的方法不同,“剪枝法”从一个很大的网络结构开始,然后逐步去掉认为多余的神经元(Sietsma and Dow,1988)。从一个大的网络开始的优点是,网络学习速度快,对初始条件和学习参数不敏感。“剪枝”过程不断重复,直到网络不再收敛时,最后一次收敛的网络被认为最优(Castellano,Fanelli and Pelillo,1997)。

神经网络训练需要训练数据样本的多少随不同的网络结构、类别的多少等因素变化。但是,基本要求是训练数据能够充分描述代表性的类别。Foody等(1995)认为训练数据的大小对遥感分类精度有显著影响,但和统计分类器相比,神经网络的训练数据可以比较少。

分类变量的数据维对分类精度的影响是遥感数据分类中的普遍问题。许多研究表明,一般类别之间的可分性和最终的分类精度会随着数据维数的增大而增高,达到某一点后,分类精度会随数据维的继续增大而降低(Shahshahani and Landgrebe,1994)。这就是有名的Hughes 现象。一般需要通过特征选择去掉信息相关性高的波段或通过主成分分析方法去掉冗余信息。分类数据的维数对神经网络分类的精度同样有明显影响(Battiti,1994),但Hughes 现象没有传统统计分类器中严重(Foody and Arora,1997)。

Kanellopoulos(1997)通过长期的实践认为一个有效的ANN模型应考虑以下几点:合适的神经网络结构、优化学习算法、输入数据的预处理、避免振荡、采用混合分类方法。其中混合模型包括多种ANN模型的混合、ANN与传统分类器的混合、ANN与知识处理器的混合等。

三、其他分类器

除了上述统计分类器和神经网络分类器,还有多种分类器被用于遥感图像分类。例如模糊分类器,它是针对地面类别变化连续而没有明显边界情况下的一种分类器。它通过模糊推理机制确定像元属于每一个类别的模糊隶属度。一般的模糊分类器有模糊C均值聚类法、监督模糊分类方法(Wang,1990)、混合像元模型(Foody and Cox,1994;Settle and Drake,1993)以及各种人工神经网络方法等(Kanellopoulos et al,1992;Paola and Schowengerdt,1995)。由于模糊分类的结果是像元属于每个类别的模糊隶属度,因此也称其为“软分类器”,而将传统的分类方法称为“硬分类器”。

另一类是上下文分类器(contextual classifier),它是一种综合考虑图像光谱和空间特征的分类器。一般的光谱分类器只是考虑像元的光谱特征。但是,在遥感图像中,相邻的像元之间一般具有空间自相关性。空间自相关程度强的像元一般更可能属于同一个类别。同时考虑像元的光谱特征和空间特征可以提高图像分类精度,并可以减少分类结果中的“椒盐现象”。当类别之间的光谱空间具有重叠时,这种现象会更明显(Cortijo et al,1995)。这种“椒盐现象”可以通过分类的后处理滤波消除,也可以通过在分类过程中加入代表像元邻域关系的信息解决。

在分类过程中可以通过不同方式加入上下文信息。一是在分类特征中加入图像纹理信息;另一种是图像分割技术,包括区域增长/合并常用算法(Ketting and Landgrebe,1976)、边缘检测方法、马尔可夫随机场方法。Rignot and Chellappa(1992)用马尔可夫随机场方法进行SAR图像分类,取得了很好的效果,Paul Smits(1997)提出了保持边缘细节的马尔可夫随机场方法,并用于SAR图像的分类;Crawford(1998)将层次分类方法和马尔可夫随机场方法结合进行SAR图像分类,得到了更高的精度;Cortijo(1997)用非参数光谱分类对遥感图像分类,然后用ICM算法对初始分类进行上下文校正。

(一)GIS支持下的遥感图像处理

GIS常常与遥感图像处理手段结合起来使用,更有效的增强与提取遥感信息。这主要表现在两个方面。

一方面是GIS作为重要的辅助手段用于遥感影像的目视解译,以提高解译精度。具体做法是将那些有助于图像解译的矢量专题图层(比如地质图、地形图、土地利用图及植被覆盖、水系发育等等)与待解译的影像叠加显示,前提是这些矢量图层必须先与影像进行过坐标配准,具有统一的坐标。这可以用于人机交互的影像解译,直接在屏幕上画出影像解译结果,还可用于在影像的监督分类前进行选取正确的训练样区以便提高分类精度。在这方面的应用中,同时还要注意这些专题图层与影像的时间差,比如植被覆盖与时相的相关性很大,另外如果时间相差较长,要充分考虑到一些客观条件上的变化,如土地利用类型、建筑物、道路等的变化。

GIS与遥感图像处理结合应用的另一方面表现在:在GIS技术支持下,地学及其他知识直接参与遥感图像的处理中,比如遥感图像的分类中可以将DEM、NDVI等知识直接作为遥感影像的新增波段,与其他波段一起进行分类,这样分类结果中就将反映出这些专题信息的分布。还比如专家系统的应用也是GIS与遥感技术结合应用的成果。

(二)GIS支持下的专题信息提取

1遥感专题信息提取方法研究的发展

遥感专题信息提取(thematic information extraction)是从遥感影像资料中获取某种特定地物特征的信息,其目的是区别图像中所含的专题目标。分类也是一种专题信息提取的方法,但专题信息提取和一般意义上的遥感图像分类有所不同,先定目标,然后有意识地专门面向对象进行识别,而分类是就图像中即有的像元给予类别的归属与划分。它的方法随着遥感技术的改进及遥感应用的深入也在不断地改进,经历了目视解译、自动分类、光谱特性的信息提取及光谱与空间特征的信息提取等多个阶段。

目视解译是最初的图像识别方式。现在的图像识别沿着两个方向发展,一是由计算机的出现带来的信息识别自动化,二是沿着遥感信息传输的本质而探寻信息识别的高精度。它们没有严格的界限,随着各自的发展而相互渗透。现有的计算机自动分类方法,都只是利用了图像数据,没有自动加入其他方面,如地学的知识,没有充分利用人脑在分析图像时所应用的知识,因此不会达到很高的精度。基于知识及专家系统的分类对分类的精度有所改善。同样,专题信息提取的最初是分析特定目标的光谱特征,形成规则,对图像进行 *** 作。计算机领域中人工智能的出现使基于知识或信息的专题信息提取成为可能。遥感成像是从多到少的映射,是个确定过程,影像解译是从少到多的映射,是个不确定过程。因此在遥感解译时,包含一个重要的地学处理过程,它包括两个方面,一是把遥感未带回的信息再补上去,即补充地学相关信息,二是根据影像信息进行地学分析,来推断出影像上未反映的信息,这都需要地学知识强有力的支持。如何把地学专家用于目视解译的知识定量化表达,让它来参与计算机处理,从根本上实现知识参与的自动提取,这是目前专题信息自动提取研究的焦点问题。

计算机自动分类前,先对训练区进行训练,实际上是一个统计的过程。这个统计过程只是就这幅图像而言。然后利用统计结果进行回归,建立一个基本适于该图像的类别确定模型。专题信息提取时,一般是先有一套遥感信息模型,而后根据具体图像的实际情况来不断地修改,实质是对模型参数的调整,最终使模型适用于该影像。遥感信息模型是在现有地面实验基础上提炼出来的地物的反演模型,而地物在卫星图像上的反映并非与地面实测数据一一对应,原因很多,使图像数据具有很大的随机性,这就又涉及到光谱辐射校正的问题。因此,需要把遥感信息理论和实际图幅影像有效地结合在一起来进行专题信息的提取。

2遥感地质专题信息提取

当今,遥感卫星“群星闪烁”,遥感数据空前丰富,然而,遥感信息被利用的比率却极低。其原因是我们缺少遥感专题信息提取的方法和模型。相对与土地利用/土地覆盖遥感信息提取来说,遥感地质信息提取的难度更大些。概括地说,遥感信息提取的方式主要有3种:目视判读提取、基于分类的信息提取和基于知识发现的遥感信息提取。遥感地质专题信息提取的方式也不外乎这三种。

(1)目视判读提取

早期从遥感影像中提取信息的主要方法是目视判读提取。由于目视判读能综合利用地物的色调或色彩、形状、大小、阴影、纹理、图案、位置和布局等影像特征知识,以及有关地物的专家知识,并结合其他非遥感数据资料进行综合分析和逻辑推理,从而能达到较高的专题信息提取的精度,尤其是在提取具有较强纹理结构特征的地物时更是如此,它是目前业务化生产的一门技术,与非遥感的传统方法相比,具有明显的优势。尽管该方法较费工费时,但由于遥感地质信息计算机自动提取的难度,仍将在遥感地质信息提取中长期存在。

(2)基于分类方法的遥感信息自动提取

在遥感信息自动提取方面,分类方法的研究历史最长久,其核心是对遥感图像的分割,其方法有无监督分类和有监督分类。就无监督分类而言,有 K-MEANS 法、动态聚类型法、模糊聚类法以及人工神经网络法;在有监督分类方面,有最小距离法、最大拟然法、模糊分类法以及人工神经网络法。最大拟然法需要各类型的先验知识及其概率,特别是需要假定各类型的分布属于正态分布,因而它是一种有参数的分类器,在具有先验性概率知识以及各类型满足正态分布的条件下,它具有较好的分类效果,该分类器具有分类速度快的优点。模糊分类是根据模糊数学所构建的一种分类器。它是建立在假设一个像元是由多个类型所组成的基础上,只是各类型的隶属度不同。在对分类器训练时,需要确定训练样本像元中各类型的隶属度,它不需要各类型的先验概率知识,也不要求各类型服从正态分布,它是一种无参数的分类器。但是对训练像元中各类型隶属度的确定比较困难。该方法适用于亚像元信息的提取。人工神经网络分类器是利用人工神经网络技术所构造的分类器,人工神经网络是近几年得到迅速发展的一门非线性科学,它是模拟生物神经网络的人工智能技术,已广泛地用于趋势分析和模式识别以及遥感图像的分类等方面。人工神经网络器不需要各类型的先验性概率知识,也不要求各类型一定要服从正态分布,它是一种无参数的分类器。尽管利用分类器进行分类时所需要的时间很短,但是在对分类器进行训练时,所需要的时间却很长。

就无监督分类而言,其所分的结果,需要专家进行判读和类别的归并,并最终确定其所属的类型。就有监督分类而言,需要选取大量的训练样区,而训练样区的选取不仅费工、费时,训练样区选择的好坏还直接影响分类的效果;同时,分类是对整个图像进行分割,它所要求的是总体的精度最高,这样就不可能完全保证我们所需专题信息的精度一定最高。分类是建立在数理统计基础之上,而没有建立在对遥感信息机理分析的基础上,也没有建立在知识挖掘的基础上,这样就使得它难以实现遥感图像专题信息提取的全自动化。同时,基于光谱特征的分类难以解决异物同谱的问题。在分类中所获取到的知识通常既不可传递,也难以解释。这也是我们对所分结果知其然,而不知其所以然的原因。我们对在任何时候,任何地点的图像,都必须重复选取训练样区的工作。这样,显然就大大限制了遥感信息提取的自动化。为此,基于知识发现的遥感专题信息提取将成为另一个最有前途的方向。

3基于知识发现的遥感专题信息提取

基于知识发现的遥感专题信息提取是遥感专题信息提取的发展趋势之所在。其基本内容包括知识的发现、应用知识建立提取模型,利用遥感数据和模型提取遥感专题信息。在知识发现方面包括从单期遥感图像上发现有关地物的光谱特征知识、空间结构与形态知识、地物之间的空间关系知识。其中,空间结构与形态知识包括地物的空间纹理知识、形状知识以及地物边缘形状特征知识;从多期遥感图像中,除了可以发现以上知识外,还可以进一步发现地物的动态变化过程知识;从GIS数据库中可以发现各种相关知识。在利用知识建立模型方面,主要是利用所发现的某种知识、某些知识或所有知识建立相应的遥感专题信息提取模型,如图3-8所示。在利用遥感数据和模型提取遥感专题信息时,应从简单到复杂,从单知识、单模型的应用到多知识、多模型的集成应用。从单数据的使用到多数据的综合使用。

4基于光谱知识的遥感专题信息提取

地物的光谱知识是遥感专题信息提取中最重要的知识。对地物光谱特征的研究,长期以来都得到各国的高度重视。我国对地物光谱开展了深入的研究,并出版了《中国典型地物波谱及其特征分析》《遥感反射光谱测试与应用研究》等书。周成虎、杜云艳根据对水体光谱特征的分析,建立了有效的NOAA AVHRR水体提取模型。陈铭臻根据对水稻和背景的光谱特征分析,建立了水稻种植面积的提取模型(TM4/TM1,TM4/TM3,TM4/TM2)。Helmut Mayer Carsten Steger通过对道路光谱知识的分析,探讨了从遥感图像上提取道路的方法,Jinfei Wang,Paul MTreitz和Philip JHowarth探讨了利用梯度方向剖面分析法从SPOT PAN图像中提取新修道路,并将其用于更新城区GIS数据库中的道路网。VLacroix,MAcheroy利用了约束梯度法提取了房屋拐角。

RMHaralick,SWang,GShapiro,JBCampbell,探讨了利用一致性标记技术提取河网及其流向。Moller-Jenson提出利用NOAA AVHRR的 CH4<45,CH5<35 建立水体提取模型。Jupp等曾提出利用 TM7波段,通过阈值法可以将水体提取出来。

图3-8 基于知识发现的遥感专题信息提取模型

发现光谱知识的方法有典型采样法、光谱曲线法和光谱剖面线法。下面还以新疆瓦石峡地区的美国陆地卫星遥感影像为例,影像大小为512×512 像元,主要典型地物有裸露岩石、雪、阴影等。为了利用这些地物的光谱知识,首先对这几种典型地物进行了光谱采样,光谱采样结果见图3-9。从中可以发现这几种地物具有明显的光谱差。

我们通过对比可以发现,岩石裸露区、冰雪覆盖区及山体阴影的光谱特征明显不同:

(1)总体上看,岩石裸露区的反射率较高,阴影的反射率较低,雪盖区位于中间岩石裸露区在TM1、TM2、TM3、TM4波段上比雪盖区稍高或相近,但在TM5、TM7波段上远高于雪盖区。

(2)雪盖区在 TM1、TM2、TM3、TM4 波段上较阴影为高,在 TM5、TM7 波段上与阴影相近或稍高。

图3-9 瓦石峡地区典型地物光谱采样曲线

(3)岩石裸露区在TM1~TM7波段上都远高于阴影区。

(4)从谱间关系上看,阴影区的反射率从TM1到TM7有逐渐降低的趋势,即TM1>TM2>TM3>TM4>TM5>TM6>TM7。从谱间关系上看,岩石裸露区在TM4上是峰值,即TM3<TM4,TM4>TM5;雪盖区的谱间关系也很明显,即由TM4到TM5有一个明显的下降趋势。

通过以上波谱分析,分别对裸露岩石、雪、阴影建立基于光谱知识的提取模型:

雪:

1∶25万遥感地质填图方法和技术

阴影:

1∶25万遥感地质填图方法和技术

岩石:

1∶25万遥感地质填图方法和技术

按照上述模型可提取出雪、阴影和裸露岩石。

基于光谱知识的专题信息提取,需要地物与背景之间在光谱上是可分的,与背景之间存在着较少的同谱现象,并且地物内部的光谱最好要一致。当地物内部光谱不一致时,可以借助于地物内部的特征成分光谱进行提取。当地物内部成分的光谱与背景之间存在着较多同谱现象时,得借助于地物的其他知识进行提取。

5基于地物纹理知识的专题信息提取

当地物组成复杂,且大于传感器的空间分辨率时,就可能遥感到地物的结构和组成。其影像就存在着明显的纹理特征。当存在着有别于背景地物的纹理结构特征时,当只靠基于光谱特征知识的提取难以完全解决专题信息的提取问题时,就必须将地物的光谱知识与纹理知识一起用来提取专题信息。纹理是指灰度值在空间上的变化,它是由一些纹理基元按照不同的空间配置形式所构成的一种图案。纹理基元的空间配置可以是随机的、确定的、概率的和函数的。纹理可分为结构性纹理和非结构性纹理,非结构性纹理又叫随机纹理。在目视判读中,纹理一般用粗细度、平滑性、颗粒性、随机性、方向性、直线性、周期性、重复性等术语来描述和表达。在通过纹理识别地物时,需要将某专题的纹理特征与周围地物的纹理特征进行比较分析。在ERDAS IMAGINE中主要有4种纹理识别的算法:平均欧氏距法(一阶)、方差法(二阶)、斜度(三阶)和峰度(四阶)。它们的计算方法如下:

(1)平均欧氏距法(一阶)

1∶25万遥感地质填图方法和技术

式中:xijλ——多波段图像λ波段(i,j)像元的数字值;

xcλ——活动窗口中心像元的λ波段数字值;

n——窗口中的像元数。

(2)方差法(二阶)

1∶25万遥感地质填图方法和技术

式中:xij——像元(i,j)的数字值;

n——活动窗口的像元数;

M——活动窗口的平均值。

(3)斜度(三阶)

1∶25万遥感地质填图方法和技术

式中:xij——像元(i,j)的数字值;

n——活动窗口的像元数;

M——活动窗口的平均值;

V——方差。

(4)峰度(四阶)

1∶25万遥感地质填图方法和技术

式中:xij——像元(i,j)的数字值;

n——活动窗口的像元数;

M——活动窗口的平均值;

V——方差。

另外,常见的纹理探测方法还有共生矩阵法。

本项目主要利用ERDAS IMAGEINE软件二阶方差法来计算影像的纹理特征。计算时采用的移动窗口,为5×5。从新疆瓦石峡地区TM影像的纹理图中可以发现,岩石裸露区纹理指数(二阶方差)较高,图像中显得较亮,而非岩石裸露区纹理指数较低,图像较暗。采用合适的阈值,提取岩石裸露区,可以发现结果大体符合实际情况。

6基于地物形状知识的专题信息提取

有时,地物与背景之间,不仅在光谱特征上相同或相近,而且在纹理特征上也比较相似。在这种情况下,就得依据地物的形状知识进行深一步的提取。对于地质岩性来说,不同的岩性常常具有不同的空间特征:

(1)侵入岩

侵入岩一般具有比较规则的平面几何形态,如:圆、椭圆、透镜状、脉状等,多数缺少层理影像特征。出露规模较大的侵入岩在图像上常具有环状、放射状等类型的水系、节理或岩脉群。

(2)沉积岩

平面形态为条状或带状,具有明显的层理影像特征。一组有序分布的沉积岩常构成颜色各异的层状影像特征。

(3)变质岩

变质岩的影像特征一般与原岩组分及变质过程新物质的加入和结构的变化有关。如果它是正变质岩,影像特征类似岩浆岩;如果它是负变质岩,其影像特征则与沉积岩的影像特征相类似。

发现地物的形态知识的方法有基于周长和面积的方法、基于面积的方法以及基于面积和区域长度的方法。

基于周长和面积的方法

形状指数

1∶25万遥感地质填图方法和技术

对于圆形而言,k大于025,对于正方形而言,k等于025,对于长方形而言,k小于025。线形地物如道路、机场和河流,其k值很小。对于非规则物体而言,其形状越复杂,其k越小。

圆度:

1∶25万遥感地质填图方法和技术

紧凑度:

1∶25万遥感地质填图方法和技术

瘦度率:

1∶25万遥感地质填图方法和技术

基于面积的测度

紧凑度指数:

1∶25万遥感地质填图方法和技术

1∶25万遥感地质填图方法和技术

基于面积和区域长度

形状率

1∶25万遥感地质填图方法和技术

椭圆指数

1∶25万遥感地质填图方法和技术

以上所有式中:

A——物体的面积;

AC——最小外切圆面积;

P——地物周长;

L——长轴长度。

形状知识,可用于地物的定位或定性提取。在用于定位定性提取时,首先,增强地物之间的边界,提取出边界;然后,进行形状指数的测定,从而达到定性定位提取。在用于定性提取时,主要是对所提取的专题信息再进一步肯定其属性。

(三)GIS支持下的多源信息综合分析

在遥感地质专题信息提取中,除了利用遥感数据外,一般还要利用大量的相关数据,如地质图件,物、化探数据等等。在对这些数据的利用方面,有两个步骤:第一步,需要挖掘知识;第二步,将这些知识用来将图形数据与遥感影像联系起来,以支持专题信息的提取。这些知识是一些正相关知识和反相关知识。对这两种知识而言都还可以进一步分为确定性知识和概率性知识。

21世纪卫星遥感将以多光谱、多时相、多分辨率、多传感器以及全天候为地学研究提供对地观测数据,促进遥感应用更广泛、更深入。然而,纵观过去的二三十年,地学思维引导着遥感技术的发展方向;而同时遥感应用的水平却滞后于空间遥感技术的发展。突出表现在:卫星发回的遥感数据未能得到充分利用,而信息提取水平的滞后使遥感数据中隐藏着的丰富知识远远没有得到充分的发掘与利用,造成了遥感信息资源的巨大浪费及其应用价值的降低。因此,信息提取的能力与效率将成为未来遥感应用面临的突出问题之一。

出现于20世纪80年代末并在近年来得到迅速发展的数据开采(Data Mining——DM)与知识发现(Knowledge Discovery from Database——KDD)的技术理论是人工智能、机器学习与数据库技术相结合的产物。它区别于简单地从数据库管理系统检索和查询信息,而强调“从数据库中发现隐含的、先前不知道的潜在有用的信息”、“从数据中鉴别出高效模式的非平凡过程。该模式是新的、可能有用的和最终可理解的”,其目的是把大量的原始数据转换成有价值的知识。而这正是目前以及未来卫星遥感信息处理的瓶颈问题。借鉴数据开采与知识发现的理论和技术将有助于解决遥感数据急剧增长与人们对数据处理和理解困难之间的矛盾。

1空间数据挖掘与知识发现

KDD和DM技术的产生与发展是基于这样一个事实:一方面,数据和数据库急剧膨胀;另一方面,现今数据库的应用仍然停留在查询、检索阶段,数据库中隐藏着的丰富知识远远没有得到充分的发掘和利用。数据库的海量增加与人们对数据库处理和理解困难之间形成了强烈的反差。KDD这个术语首先出现在1989年8月在美国底特律召开的第11届国际人工智能联合会议的专题讨论会上,1991年、1993年和1994年又接着继续举行KDD专题讨论会。随着参加会议人数的增多,从1995年开始,每年都要举办一次KDD国际会议。除了理论研究外,也出现了相当数量的KDD产品和应用系统,并在实际应用中获得了一定的成功。

按照 Fayyad等的定义,KDD 是“从数据集中识别出有效的、新颖的、潜在有用的,以及最终可理解的模式的非平凡过程”。KDD 的一般过程(图 3-10)包括数据准备(data preparation)、数据挖掘(data mining),以及结果的解释评估(interpretation and evaluation)。

图3-10 KDD过程示意图

数据准备包括数据选取(data selection)、数据预处理(data preprocessing)和数据变换(data transformation)。数据选取的目的是确定发现任务的 *** 作对象,即目标数据(target data),它是根据用户的需要从原始数据库中抽取的一组数据。数据预处理的目的是去除噪声等。当数据挖掘的对象是数据仓库时,一般来说,数据选取和数据预处理已在生成数据仓库时完成。数据变换的主要目的是消减数据维数或降维(dimension reduction),即从初始特征中找出真正有用的特征以减少数据挖掘时要考虑的特征或变量个数。

数据挖掘阶段首先要确定挖掘的任务或目的是什么,考虑决定使用什么样的挖掘算法。同样的任务可以用不同的算法来实现,选择实现算法有两个考虑因素:一是不同的数据有不同的特点,因此需要用与之相关的算法来挖掘;二是用户或实际运行系统的要求,如准确性与可理解性之间的偏好等。

2数据挖掘与知识发现的主要类型和方法

一般统计数据库的数据挖掘出现得最早,也最为成熟。一般而言,数据挖掘和知识发现可分为如下几种类型(Fayyad,1997):

(1)分类:将数据项映射到一个或若干已定义的类的学习函数。

(2)回归:将数据项映射到实值预报变量的学习函数。

(3)聚类:寻找有限的类别来描述数据集的方法。

(4)概括(或称泛化):寻找描述各数据子集共性的方法。

(5)依赖模式:寻找描述变量间显著依赖关系的模式。

(6)变化和偏离检测:从与以前数据对比中发现显著变化。

目前在数据挖掘和知识发现的研究中出现了大量的新方法及各种方法的结合,其中比较著名的方法有如下几种:

(1)基于决策树(decision tree)分类的ID3和C45方法。

(2)用于概括的AQ15和CN2方法。

(3)解决不精确、不确定知识的粗糙集(Rough Set)方法。

(4)大量人工神经网络方法,如经典的反向传播[BP]算法,自组织映射(SOM)和自适应谐振理论(ART)等。

(5)贝叶斯概率网络学习方法。

(6)用于产生关联规则的Apriori的方法。

作为目前国外的热门研究课题之一,数据开采和知识发现既是人工智能学者的研究热点,也是数据库专家的探索对象,其工作涵盖了医学、机器学习、人工智能、数学、市场营销等诸多领域。获得了许多有用的知识。迄今为止,国内从事这方面研究的单位还不多,把KDD和DM技术应用于卫星遥感的信息处理,更是一项崭新的课题。

3遥感影像中的数据挖掘与知识发现

卫星遥感数据库作为数据库的一种,对于赋存其中的信息的处理与识别,自然可以借鉴一般意义上的DM和KDD技术;而作为一类特殊的数据库——图像数据库,有着区别于一般关系数据库和事务数据库的信息内容,隐含着丰富的时间、光谱和空间信息。因而,就这类库中的知识发现而言,数据开采也应具有特殊的过程和方法。

根据上述DM和 KDD 的技术流程示意图(图 3-11)并考虑到卫星遥感数据特殊性,中科院的何国金等人提出了针对地质应用的卫星遥感数据开采和知识发现的理论与技术框架。在此框架中,数据开采占了极为重要的地位。它包括遥感数据的时相选择、应用预处理、特征分析、信息识别与知识解释。现实生活中,许多遥感应用者忽略了该过程的特殊作用,直接把原始遥感图像的解释结果作为应用的基础(虽然在解译过程中也加入了人的知识),因而获得的知识往往是肤浅的、表面化的、不精确的。遥感数据开采过程只有充分考虑原始数据的波谱、空间和时间特征,才能更好地实现针对遥感应用的有价值的、较精确的、较高水平的知识发现。

图3-11 卫星数据遥感挖掘和知识发现

以上就是关于如何利用遥感技术获取南阳市的土地利用类型的变化情况全部的内容,包括:如何利用遥感技术获取南阳市的土地利用类型的变化情况、遥感数字图像处理方法、高分辨率影像数据处理及数据建库技术方法研究等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10110040.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存