经过“互联网+物流管理”改革,物流企业在物流管理方面已经实现信息管理系统应用,借助自动化办公与全过程物流信息跟踪,提高了物流管理效率。目前,正值“大数据+物流管理”建设新阶段,伴随着数据分析技术的持续性运用,将全面升级物流信息化管理水平。本文以大数据时代物流管理信息化升级探析作为研究题目,具体探析中,简述了大数据时代本质和大数据技术特征;剖析了大数据时代物流管理信息化升级的必要性;并以此为基础,分别从物流管理信息化标准设置、数据库建设、数据分析技术应用、人力资源配置四个层面,进行了具体讨论。物流管理信息化管理以物流企业实际的产业链条密切对应,将订单处理、货物入库、货物存储、货物装车、货物运输、货物中转、货物送达签收、货物签收后的服务等环节,进行了统一管理,实现了每一物品由订单到签收各环节的信息一致记录与全程可跟踪管理。因而,从管理效率方面看,物流管理信息化在实质上提高了物流管理效率,减少了物流管理各环节的损失,提高了物流管理的效用生产效率。然而,在大数据时代,通过区分、比较信息化管理和数据化管理的差别,物流企业也认识到了物流管理信息化的不足之处,未能实现各类生产要素方面的高效配置。因此有必要在大数据时代推进物流管理信息化升级。
大数据时代概述
(一)大数据时代的本质从本质方面看,大数据时代旨在将现实世界中的各类事物,转换为数据,为其赋予可计算性,并借助数据分析技术,实现对各类事物的预测分析,进而提供相对精准的解决方案,有利于促进现场世界各类任务的有效完成。一些学者也将其称为“科学预测学”。
(二)大数据技术的特征从特征方面看,大数据技术拥有所谓的“4V”特征。“4V”分别指的是:Volume——体量大、Variety——种类多样、Velocity——高速运行和传播、Value——价值密度低。具体而言,对于大数据技术的应用,可以处理正在呈数量级增长的海量数据,针对不同类型的数据实施同步采集、高效获取、快速传输、集中分析。并且按照数据中心处理与企业各管理部门的信息管理系统的通信连接路径,将预测结果分布分发到各个部门,为其快速处理各项业务提供参考信息等。以物流企业的物流管理为例,就可以利用大数据技术,对各个物流管理环节,实施综合分析,并使各个管理部分在各自的管理环节,按照预测结果与参考信息,快速调配资源,提高各环节之间的对接效率,提高整个物流服务产业链条的运营效率。
大数据在供应链中的应用
大数据在供应链中的应用,大数据这个词现在我们经常会听到,而且我们只知道生活已经离不开大数据,却不知道它具体在哪些方面发挥着作用,下面看看大数据在供应链中的应用。
大数据在供应链中的应用11、有关大数据
11分析大数据
在这个信息公开的社会里,我们每天都可以从外界获得大量的信息。但是随之而来的疑问也出现了,在这样庞大的数据中我们如何知道哪些信息是对我们有利的呢?在大数据时代里,如何快速精确的获得有用信息成为了我们迫在眉睫的问题。
12大数据分析在供应链管理中的作用
数据的分类有着很重要的作用,大数据的种类也对他的表现形式有着至关重要的影响,比如说收集这个信息的方式和方法。在如今的公司供应链管理中,影响最大的就是EPR数据,它包含了企业在运行过程中的各方面的数据,这也是我们去了解一个企业的重要数据。
还有一些数据是有关社会数据和客户数据,通过这些数据我们可以了解到一个新的项目所涉及的参与的人数,达到的效果,从而是企业达到更加高效合理的发展。
13大数据分析的特色
和传统数据分析不同的是,大数据分析可以更加具体的去描述。因为时间在流逝而大数据分析记载下来的东西却不会自动流逝或者更新,所以大数据分析具有流逝性,因为所有的信息都是人们记载得来的,只有人们的参与与分享才能获得大数据,所以大数据分析和人们不可或分。因为大数据分析具有智慧性,所以它可以通过我们平时的搜索词或者喜好自动为我们推送我们可能感兴趣的资料。
2、大数据分析与供应链之间的关系
21供应链管理的作用
在有大数据分析的前提下,供应链才能找到合适的原料供应商。供应链就像一条食物链,都处在他们各自应该有的分支上。所制造的产物要在合适的渠道下一层层的在相应的分支下传递下去。供应链管理这个时候起到了作用,它的作用是通过合适的方法让客户的花费最小而得到的效益最高,从而实现共赢。
22二者的有效应用
供应链与大数据分析从头到尾都有着密不可分的联系。中国在社会主义市场经济改革的道路上越走越远,所以企业供应链管理工作也在提高。我们也更加重视企业供应链管理方面的有效利用,这就不可避免地与大数据分析联系起来,大数据分析在企业供应链管理的每一步都有着不可缺少的作用。想要好的质量和效率,就一定要重视大数据的分析结果,将它与企业供应链管理工作巧妙结合。
大数据分析也可以给我们提供一个广阔的视野,去观察各个环节是怎样利用我们所提取的信息,这样会更加方便我们了解通过大数据分析所得到的效益。通过大数据分析对企业某项目走势进行猜测、分析、整理。为了保证利润的最大化,需要我们对大数据分析的结果进行研究,用最有用的信息来提高工作的效率和质量。
23大数据分析与供应链的决策关系
大数据分析的应用可以用在已经确定的项目上,分析的结果与决策联系起来,决策有不足的地方可以通过大数据分析发现,进而弥补不足。供应链也具有风险性,所以大数据分析的结果能为供应链在目标项目上提供好的营销决策、利用大数据分析,化无用为有用。大数据分析的好处大家都知道,所以有很多公司利用大数据分析来获取供应链,但是这并不是所有的公司都能驾驭的了的,许多公司还不能满足其要求。
24大数据分析与供应链
大数据分析在供应链管理中的应用模式。从物料来源来讲,供应商进行风险评估,将产品以特色进行区分,物料来源渠道的选择,供应商达到一体化水准,供应商进行谈判。从加工生产来看,首先进行存货优化,再进行产能维持,接着工厂选址,最后是人力资源。
从物流配送来看的话,则是配送与物流优化,再选择好的运输方案,然后例行路线的安排,接着是指定完美的运输路线,最后配置运输车辆。从销售服务来看,首先基于地域的市场开发,其次分析店内的消费行为,接着对客户群进行精细的划分,然后进行多渠道的市场开发,最后优化开发方案。这些都是大数据分析在各个领域内的作用,所以我们要好好的利用大数据分析,从而获得较大的收益。
3、问题与现状
31大数据分析的现状
日常生活中我们都会获得大量的信息,而这些信息如果不加以归纳整理,一定是一堆没有用的信息,我们不能精确的从里面提取出来真正需要的东西。企业也是这样,信息不经过分析,就只是没用的数据。所以在企业里决策和分析有着至关重要的作用,只要认真发掘我们能从大数据中得到很多有用的消息,从而将商业信息变成商业智能。
32大数据分析的问题
从各类新型软件的兴起中我们不难发现,如今的大数据分析的应用的作用并没有被完全利用,比如抖音的兴起,抖音带给我们许多欢乐,我们也可以从这个软件上获得许多消息,但是如果我们认真的想一想,抖音带给我们的信息是不是太过于碎片化,只通过一个十几秒的视频我们不能了解一件事情的真相,而且还有可能被误导。所以供应链管理遇到了这方面的困难,解决大数据分析片面化与碎片化至关重要。
33大数据与市场
大数据分析可以看出是以人民大众作为目标的。在市场中渐渐的将大数据的分析结果作为核心开始转型,去面对人民群众的真正需求和解决这些需求。我们也可以利用大数据分析去寻找所需要的人,去分析他们所需要的东西,然后去供给。通过这些潜在的客户来提升公司的效益。
为公司带来效益的同时也为他们带来好处,何乐而不为。大数据分析还能为市场找到某一物品的平均价格,可以按照地区细分,这样一来,更加方便进行价格调整。
人们经常说,顾客就是上帝,所以满足顾客的需求非常重要,好的供应链管理对流程和运营有着较高的要求,所以这也需要好的大数据分析为我们提供基础。从大数据分析的预测也可以为企业提供好的基础。
4、总结
我们生活在大数据年代里,许多新兴产业已经离不开大数据,他们依赖着大数据分析为他们带来的好处,大数据分析对市场预测的准确度也为企业带来了便利,帮助公司制定好的计划企业的管理人员要了解供应链与大数据分析之间的关系,不断改进大数据分析的模式。同时他们也在努力的去了解大数据分析,期待着能从大数据分析中再得到更多的效益。我们的生活也因为大数据分析有了天翻地覆的改变。
大数据在供应链中的应用2一、大数据的定义
那什么是大数据呢?麦肯锡将大数据定义为:无法在一定时间内用传统数据库软件工具对其内容进行抓取、管理和处理的数据集合。显然麦肯锡将大数据定义的重点放在了“大”上。诚然,人们最初接触大数据的时候,震撼于大数据爆发性增长所带来的的巨大体量,最强烈直观的感受就是“大”。但随着时间的推移,人们开始分析,挖掘数据,去探索数据背后隐藏的价值,自此数据金矿展露出矿山一角,开始在时代洪流中大放金光,大批淘金者蜂拥而上,更是助推了大数据的蓬勃发展,最终促成了大数据生态系统的形成。
笔者大胆的对时代背景下的“大数据"做出如下定义:以海量数据为基础,以数据的整理、分析、挖掘为过程,并最终以实现数据价值为结果的一整套理论和实践就是大数据。
笔者认为大数据的内在生命力是数据的持续性爆发增长,而外在特征用数据人普遍认同的5V加以描述:
Volume:数据体量巨大。就是大。
Variety:数据类型繁多。繁杂纷复的属性和行为数据以结构化或者非结构化的形式存储在形式各异的存储器上。
Value:价值密度低。数据万千,可提取的价值往往只占万一。更因此,科学的数据挖掘和高精度算法才显得如此重要。
Velocity:处理速度块。数据体量巨大,且增长迅猛,不快实在不行。
Veracity:真实性。真实的数据带来真实的价值,弄虚作假切不可取。去伪存真也是一种真实,需要每个数据人的努力。
二、大数据的应用
大数据正在渗透到我们生活的方方面面,在生产、经营活动、流通、生物医学、城市管理、安全防护、金融、营销等各个领域大放异彩。
1智能推荐系统作为大数据在互联网领域的最广泛普遍的应用,通过分析用户的历史行为习惯,来了解用户的喜好,从而为用户推荐感兴趣的信息,满足用户的个性化推荐需求。从各大电商平台,到门户网站,再到近年大火的短视频平台,无不能发现它的踪影,给人们真正带来了千人千面的个性化优质体验。
2大数据在生物医学领域的应用,通过统计分析大量网民搜索的流行病信息,结合气温变化,环境指数,人口流动等因素,创建一个个预测模型,预测未来疾病的活跃指数,提供疫病预防建议,来实现以防代治。
3大数据在物流领域的应用,利用集成智能化技术,在大量数据训练下,使得物流系统能模仿人的智能,具有思维、感知、学习、判断的能力自行解决物流中的某些问题,包括但不限于存货盘点、拣货、包装、单据管理、运输、物流追踪、派送时间预测等等问题,强力助力完善物流体系的智能化进程。
再比如利用大数据打造智慧城市,在安防方面,构建724小时不间断的治安监控,在金融领域用于分析市场情绪,评估信贷风险等等。随着大数据的应用越来越广泛,我们在日常生活中,会越来越受益大数据带来的价值。
大数据在供应链中的应用3大数据是什么意思
大数据是指那些数据量特别大、数据类别特别复杂的数据集,这种数据集不能用传统的数据库进行转存、管理和处理,是需要新处理模式才能具有更强大的决策力、洞察发现力和流程优化能力的海量、高增差率和多样化的信息资产。
而大数据的主要特点就是数据量大、数据处理速度快、数据真实性高、数据类别复杂等,它们合起来被称为4V。
大数据也可以应用在警察预测犯罪的发生、预测选举结果,同时还能通过手机定位数据和交通数据建立城市规划,现在医疗行业也在做大数据的分析。
现在社会发展速度非常快,科技也很发达,信息的流通和人们之间的交流也非常密切,而大数据就是这个时代高科技的产物。
对于大部分行业而言,怎么运用这些大规模数据是赢得竞争的关键,但同时,大数据在经济发展中的意义不能取代一切对于社
首先从移动互联网和大数据的特点入手,移动互联网突破了时间和空间的限制,使得人们可以随时随地触网,同时也表现出了碎片化。大数据是建立在大规模的数据上,有了大量的数据,就可以进行分析和归类,从而精准地确定需求。大数据对供应链的影响如下:
1、库存优化。比如,SAS独有的功能强大的库存优化模型可以实现在保持很高的客户满意度基础上,把供应成本降到最低并提高供应链的反应速度。其库存成本第一年就可下降15%~30%,预测未来的准确性则会上升20%,由此带来的是其整体营收会上升7%~10%。当然还有一些其他的潜在好处,如提升市场份额等。此外,运用SAS系统,产品质量会得到显著提升,次品率也会因此减少10%~20%。
2、创造经营效益,从供应链渠道,以及生产现场的仪器或传感器网络收集了大量数据。利用大数据对这些数据库进行更紧密的整合与分析,可以帮助改善库存管理、销售与分销流程的效率,以及对设备的连续监控。制造业要想发展,企业必须了解大数据可以产生的成本效益。对设备进行预测性维护,现在就具备采用大数据技术的条件。制造业将是大数据营业收入的主要来源。
3、B2B电商供应链整合。强大的电商将引领上游下游生产计划-下游销售对接,这种对接趋势是上游制造业外包供应链管理Supply-Chain,只专注于生产Manufacturing,ProductionChain(R&D)。物流外包上升到供应链外包是一个巨大的飞跃,体现了电商的强大竞争力和整合能力,海量数据支持和跨平台、跨公司的对接成为可能。B-B供应链整合具有强大的市场空间,能够改善我国产业布局、产业链优化、优化产能分配、降低库存、降低供应链成本、提高供应链效率。
4、物流平台规模发展,B-C商业模式整合已经成为现实,但是物流执行平台的建设是拖后腿的瓶颈。多样产品的销售供应链的整合有很大的技术难题,如供货周期、库存周期、配送时效、物流 *** 作要求等,这样的物流中心难度很大,大数据平台建设将驱动整体销售供应链整合;中国的还有的现实问题跨区域物流配送、城乡差异等,政府的管制是一大难点/疑难杂症,大数据平台有助于政府职能调整到位。
5、产品协同设计,过去大家最关心的是产品设计。可是现在,在产品设计和开发过程中,相关人员相互协同,工厂与制造能力也在同步设计和开发中。当前的压力在于向市场交付更具竞争力、更高配置、更低价格、更高质量的产品,而同时满足所有这些要求,是制造和工程企业的下一个重大的价值所在。这也正是大数据的用武之地。
以上就是关于山东林安|物流大数据时代全部的内容,包括:山东林安|物流大数据时代、大数据在供应链中的应用、物流与供应链管理如何有效运用大数据等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)