大数据分析师通常需要有以下技能:
数据挖掘技能:能够使用各种数据挖掘技术,从海量数据中发现有用的信息。
数据建模技能:能够使用统计建模技术和机器学习算法,对数据进行预测、分类、聚类等分析。
数据库管理技能:能够使用数据库管理系统,对数据进行存储、管理和查询。
业务领域知识:需要对所分析的业务领域有深刻的了解和认识,以便更好地识别数据中的模式和趋势。
沟通协作技能:需要与其他部门的人员进行沟通协作,将数据分析结果转化为具体的业务实践。
大数据分析师的工作范围非常广泛,他们可以在各种行业和领域中工作,例如金融、医疗、教育、零售等。他们的工作可以包括数据收集、清洗、处理、分析和解释等方面,为企业或组织提供支持,帮助他们做出更好的决策,提高业绩和效率
大数据工程师、大数据维护工程师、数据挖掘师、大数据算法师。
大数据开发方向:涉及的岗位诸如大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等。
数据挖掘、数据分析和机器学习方向:涉及的岗位诸如大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等。
需要的能力:1、提升程序设计能力。动手实践能力对于本科生的就业有非常直接的影响,尤其在当前大数据落地应用的初期,很多应用级岗位还没有得到释放,不少技术团队比较注重学生程序设计能力,所以具备扎实的程序设计基础还是比较重要的。
2、掌握一定的云计算知识。大数据本身与云计算的关系非常紧密,未来不论是从事大数据开发岗位还是大数据分析岗位,掌握一定的云计算知识都是很有必要的。掌握云计算知识不仅能够提升自身的工作效率,同时也会拓展自身的技术边界。
问题一:如何才能成为一个数据分析师?????? 随着各行业计算机应用以及信息化水平提高,各行业企事业单位已装备了非常完备的计算机系统,搭建了畅通无阻的互联网平台,信息化“硬件”设施已初具规模,但与此同时,随着业务发展以及市场信息不断积累,商业领域和行业部门产生了大量的业务数据,很多企业信息中心或统计部门数据量非常之大已成为名副其实的信息海洋,大量的、杂乱无章的数据以及错误的数据分析方法非但没有给企业创造竞争力,相反给企业带来人力、物力、时间巨大浪费和难以摆脱的长期压力,甚至由于误用错误的数据分析方法或使用不完整的数据,给企业发展带来负面影响或相反作用。因此,面对用于决策的有效信息隐藏在大量数据中的现实问题,如何采用正确的数据分析统计和数据挖掘方法,从大量的数据中提取对人们有价值、有意义的数据,获得有利于商业运作、提高竞争力的信息,已成为企业面临的共同问题。
为推动知识管理,挖掘数据价值,适应商业企业的市场竞争需要,同时更好的配合国家对专业技术人员进行培训的要求, 信息产业部通信行业职业技能鉴定指导中心根据国家对专业技术人员加强培训且须持证上岗等文件精神,于2005年9月正式面向全国推出了国家数据分析师认证(NTC-CCDA)培训项目。
国家数据分析认证(NTC-CCDA)课程包括数据分析思维训练、数据分析理念和误区陷阱提示、数据分析方法内容精解、数据分析工具软件应用(SPSS、Clementine、Decision Time &What If、AMOS4.0-5.0、AnswerTree3.0等)、市场预测分析等方面内容,它是对数据进行调查统计、分析预测、数据挖掘等一系列活动的总和,其基本目的是采用科学的正确的数据统计、分析预测、数据挖掘等方法,从大量的、杂乱无章的数据中提取对人们有价值、有意义的数据,从而提升数据价值,提高企业核心竞争力。
国家数据分析认证(NTC-CCDA)作为2005年最新的国家级认证培训项目,必将在今后相当长的一段时间内,成为非常热门的职业之一,专家预测,在今后的五年内,我国将至少需要50万名持有国家数据分析认证(NTC-CCDA)证书的数据分析专业人才。
目前, *** 经济部门、金融机构、投资公司以及企业统计和分析人员对国家数据分析师的需求正在与日俱丹。项目数据分析行业在欧美发展得十分成熟,数据分析这一帮助企业决策的方式已经深入到各行各业。而在中国,数据分析刚刚走过了7个年头,巨大的市场潜力和人才缺口使得数据分析行业进入了发展的黄金时期,而数据分析师则成为了一个朝阳职业。数据分析如何切实地帮助企业决策?数据分析师这一新兴职业的工作性质是什么?整个行业的未来发展前景如何?近日笔者带着这些问题采访了相关人士。
●数据分析在我国属于朝阳行业
数据分析在国外广泛应用于各个领域,但在中国仍属于朝阳行业,至今刚刚走过了7个年头。“中国数据分析行业的发展大致可以分成四个阶段”, 中国商业联合会数据分析专业委员会培训处主任任彦博表示,“第一阶段可称为觉醒与前瞻。90年代,大量海外机构将西方投资决策技术引进中国,并受到中国企业和金融投资机构的广泛学习借鉴。数据分析行业到了21世纪进入到第二个阶段,迎来了数据分析师的诞生。从2004年到2010年,我国项目数据分析师人数从零起步,猛增至近万人。到了第三阶段,我国首家数据分析事务所创立。在第四个阶段中,中国商业联合会数据分析专业委员会正式成立,首届中国数据分析业峰会在京成功的举行都标志着中国数据分析行业已经进入快速发展的成长期。”
●高端人才的缺失制约......>>
问题二:想成为大数据分析师应该怎么做 我自学3个月Python三个月,现已收到数据分析员岗位的offer。
怎么做?
两点。
选择一门工具,excel,r,python都可以
懂业务,会写数据分析报告
本人刚刚从零基础走过来,欢迎交流
问题三:如何快速成为数据分析师 去大 讲台 看看,无论从师 资 都是不错的,在线运用科学混合式自适应学习系统组织线上教学,希望可以帮助到你。
问题四:大专生怎么成为大数据分析师 首先要懂这些呀,然后先去找公司上班,慢慢发展。如果不会 可以找一个技校学习下
问题五:如何考大数据分析师 没问题,如果你说是项目数据分析师的话。我也在考,经管,计算机,数学等都可以。大三以上。储备知识就是它的教材吧,数据分析基础,量化投资,量化经营,还有个战略管理,全是excel。报名的话发教材
技能要求
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。
问题六:现在大数据分析师工资好高,想从事这一行业应该怎么做 科多的 课程就很不错 , 就业也很好,
问题七:学统计学的怎样成为数据分析师?需要考取什么证书?怎么发展好? 证书目前主流有两个
人民大学经济论坛主办的 《数据分析师》 英文简称:CDA
商业联合会数据分析专业委员会和工信部教育与考试中心主主办的 《项目数据分析师》 英文简称:CPDA
【关于CPDA】
CPDA全名叫项目数据分析师,国内最早的数据分析培训,原先是信息产业部在组织,目前由中商联数据分析专业委员会和工信部教育与考试中心主管,内容主要针对的是基于企业在投资、经营、管理领域的分析,类似MBA课程。
课程包括《数据分析基础》、《战略管理》、《量化投资》、《量化经营》等,涵盖企业运营的每个环节,以数据分析方法来进行管理、经营、投资等分析,应该说企业的管理层适合学习CPDA来进行管理层面的分析和指导。
目前很多课程没有实际可 *** 作模型,而CPDA就有,其中介绍很多企业生产、管理、经营、投资分析和决策的案例和模型,目的也是为了使广大学员能够在管理岗位上能够有理论支持、实际模型可 *** 作,使大家有切实可 *** 作的实际模型去分析。
【关于CDA】
CDA全名是数据分析师,由中国人民大学经济论坛主办。主要是讲数据分析方法、技术和软件 *** 作为主。
课程包括:1、统计概率基础;2、数据分析模型方法;3、软件、工具的运用。如果这些技术没有,也不可能会玩数据分析。所以,CDA主要是针对数据分析师必备的技术性培训,是从数据的获取、储存、整理、清洗、分析,检验到结果报告一个整体的流程,以及数据分析一些软件的 *** 作。
【总结】
因此,对于这两者的区别,我想大家应该有一个清晰的认识。
如果你是已经工作,有一些基础,想做到管理层或已经是管理层,需要从企业经营管理的角度,以项目投资数据分析和企业经营数据分析为主要研究对象的学员,可以选择CPDA;
如果你是入门、转行零基础、基础薄弱、或只想做技术性工作为主的学员,首先的一步是掌握数据分析的方法和技术,这时你可以选择CDA。
另外,如果是研究算法的高级分析师、高级挖掘工程师、大数据分析师,可以参考其他相关的名师培训。
sc-cpda 数据分析公众交流平台 详细我资料
问题八:学哪些专业的人,做大数据分析这个职位比较合适 这个没有绝对的!
都只是相对的,
要看做的数据分析工作偏向于哪个方面,
比如说:做营销数据分析,那肯定懂得营销的专业人士更有优势些;
做电商数据分析,那就是学IT出身的,相对合适些;
做品牌形象分析时,常会用到映射法,映射法是基于心理学的数据收集方法,那就是学心 理学的更合适些;
做投资分析师,学财务管理学的更合适;
……
问题九:学大数据可以做数据分析师么?哪里的要好一些? 大数据的未来发展方向非常广,数据分析师也是其中的一个发展方向。我认为北京的光环大数据比较不错,有名师指导和项目实战。现在公司要的就是可以上手做项目的人,所以你可以去光环大数据看看。
问题十:随着大数据时代到来,做数据分析师好还是做数据库管理 都不错。数据库管理以后会偏向运维管理,数据分析师就会像精算一样,技术很专
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)