Linux 分布式系统基础设施

Linux 分布式系统基础设施,第1张

一个大型、稳健、成熟的分布式系统的背后,往往会涉及众多的支撑系统,我们将这些支撑系统称为分布式系统的基础设施。除了前面所介绍的分布式协作及配置管理系统ZooKeeper,我们进行系统架构设计所依赖的基础设施,还包括分布式缓存系统、持久化存储、分布式消息系统、搜索引擎,以及CDN系统、负载均衡系统、运维自动化系统等,还有后面章节所要介绍的实时计算系统、离线计算系统、分布式文件系统、日志收集系统、监控系统、数据仓库等。

分布式缓存主要用于在高并发环境下,减轻数据库的压力,提高系统的响应速度和并发吞吐。当大量的读、写请求涌向数据库时,磁盘的处理速度与内存显然不在一个量级,因此,在数据库之前加一层缓存,能够显著提高系统的响应速度,并降低数据库的压力。作为传统的关系型数据库,MySQL提供完整的ACID *** 作,支持丰富的数据类型、强大的关联查询、where语句等,能够非常客易地建立查询索引,执行复杂的内连接、外连接、求和、排序、分组等 *** 作,并且支持存储过程、函数等功能,产品成熟度高,功能强大。但是,对于需要应对高并发访问并且存储海量数据的场景来说,出于对性能的考虑,不得不放弃很多传统关系型数据库原本强大的功能,牺牲了系统的易用性,并且使得系统的设计和管理变得更为复杂。这也使得在过去几年中,流行着另一种新的存储解决方案——NoSQL,它与传统的关系型数据库最大的差别在于,它不使用SQL作为查询语言来查找数据,而采用key-value形式进行查找,提供了更高的查询效率及吞吐,并且能够更加方便地进行扩展,存储海量数据,在数千个节点上进行分区,自动进行数据的复制和备份。在分布式系统中,消息作为应用间通信的一种方式,得到了十分广泛的应用。消息可以被保存在队列中,直到被接收者取出,由于消息发送者不需要同步等待消息接收者的响应,消息的异步接收降低了系统集成的耦合度,提升了分布式系统协作的效率,使得系统能够更快地响应用户,提供更高的吞吐。

当系统处于峰值压力时,分布式消息队列还能够作为缓冲,削峰填谷,缓解集群的压力,避免整个系统被压垮。垂直化的搜索引擎在分布式系统中是一个非常重要的角色,它既能够满足用户对于全文检索、模糊匹配的需求,解决数据库like查询效率低下的问题,又能够解决分布式环境下,由于采用分库分表,或者使用NoSQL数据库,导致无法进行多表关联或者进行复杂查询的问题。

这要根据是读压力大还是写压力大分别考虑。

读压力也要看,是单个表单个记录的查询压力太频繁,还是多个表多行记录的统计计算压力大。

通常你可以考虑mysql当中,一个master用于写入,多个slave用于查询。

单行记录的查询还可以结合memcached这样的缓存。

这些都需要根据经验,规划好整个系统的架构模式,并不断进行调整和优化。

使用集群。。。。。ORACLE的话,你还有RAC可选,SQL。。只有集群了。。。不过优点是。。SQL SERVER很容易迁移。SQL集群我也没做过。。。以下是转帖,具体配置方法去问微软中国吧。。。电话应该很容易找得到 很多组织机构慢慢的在不同的服务器和地点部署SQL Server数据库——为各种应用和目的——开始考虑通过SQL Server集群的方式来合并。 将SQL Server实例和数据库合并到一个中心的地点可以减低成本,尤其是维护和软硬件许可证。此外,在合并之后,可以减低所需机器的数量,这些机器就可以用于备用。 当寻找一个备用,比如高可用性的环境,企业常常决定部署Microsoft的集群架构。我常常被问到小的集群(由较少的节点组成)SQL Server实例和作为中心解决方案的大的集群哪一种更好。在我们比较了这两个集群架构之后,我让你们自己做决定。 什么是Microsoft集群服务器 MSCS是一个Windows Server企业版中的内建功能。这个软件支持两个或者更多服务器节点连接起来形成一个“集群”,来获得更高的可用性和对数据和应用更简便的管理。MSCS可以自动的检查到服务器或者应用的失效,并从中恢复。你也可以使用它来(手动)移动服务器之间的负载来平衡利用率,以及无需停机时间来调度计划中的维护任务。 这种集群设计使用软件“心跳”来检测应用或者服务器的失效。在服务器失效的事件中,它会自动将资源(比如磁盘和IP地址)的所有权从失效的服务器转移到活动的服务器。注意还有方法可以保持心跳连接的更高的可用性,比如站点全面失效的情况下。 MSCS不要求在客户计算机上安装任何特殊软件,因此用户在灾难恢复的经历依赖于客户-服务器应用中客户一方的本质。客户的重新连接常常是透明的,因为MSCS在相同的IP地址上重启应用、文件共享等等。进一步,为了灾难恢复,集群的节点可以处于分离的、遥远的地点。 在集群服务器上的SQL Server SQL Server 2000可以配置为最多4个节点的集群,而SQL Server 2005可以配置为最多8个节点的集群。当一个SQL Server实例被配置为集群之后,它的磁盘资源、IP地址和服务就形成了集群组来实现灾难恢复。 SQL Server 2000允许在一个集群上安装16个实例。根据在线帮助,“SQL Server 2005在一个服务器或者处理器上可以支持最多50个SQL Server实例,”但是,“只能使用25个硬盘驱动器符,因此如果你需要更多的实例,那么需要预先规划。” 注意SQL Server实例的灾难恢复阶段是指SQL Server服务开始所需要的时间,这可能从几秒钟到几分钟。如果你需要更高的可用性,考虑使用其他的方法,比如log shipping和数据库镜像。 单个的大的SQL Server集群还是小的集群 下面是大的、由更多的节点组成的集群的优点: 更高的可用新(更多的节点来灾难恢复)。 更多的负载均衡选择(更多的节点)。

数据库优化一方面是找出系统的瓶颈,提高MySQL数据库的整体性能,而另一方面需要合理的结构设计和参数调整,以提高用户的相应速度,同时还要尽可能的节约系统资源,以便让系统提供更大的负荷

1 优化一览图

2 优化

笔者将优化分为了两大类,软优化和硬优化,软优化一般是 *** 作数据库即可,而硬优化则是 *** 作服务器硬件及参数设置

21 软优化

211 查询语句优化

1首先我们可以用EXPLAIN或DESCRIBE(简写:DESC)命令分析一条查询语句的执行信息

2例:

显示:

其中会显示索引和查询数据读取数据条数等信息

212 优化子查询

在MySQL中,尽量使用JOIN来代替子查询因为子查询需要嵌套查询,嵌套查询时会建立一张临时表,临时表的建立和删除都会有较大的系统开销,而连接查询不会创建临时表,因此效率比嵌套子查询高

213 使用索引

索引是提高数据库查询速度最重要的方法之一,关于索引可以参高笔者<MySQL数据库索引>一文,介绍比较详细,此处记录使用索引的三大注意事项:

214 分解表

对于字段较多的表,如果某些字段使用频率较低,此时应当,将其分离出来从而形成新的表,

215 中间表

对于将大量连接查询的表可以创建中间表,从而减少在查询时造成的连接耗时

216 增加冗余字段

类似于创建中间表,增加冗余也是为了减少连接查询

217 分析表,,检查表,优化表

分析表主要是分析表中关键字的分布,检查表主要是检查表中是否存在错误,优化表主要是消除删除或更新造成的表空间浪费

1 分析表: 使用 ANALYZE 关键字,如ANALYZE TABLE user;

2 检查表: 使用 CHECK关键字,如CHECK TABLE user [option]

option 只对MyISAM有效,共五个参数值:

3 优化表:使用OPTIMIZE关键字,如OPTIMIZE [LOCAL|NO_WRITE_TO_BINLOG] TABLE user;

LOCAL|NO_WRITE_TO_BINLOG都是表示不写入日志,优化表只对VARCHAR,BLOB和TEXT有效,通过OPTIMIZE TABLE语句可以消除文件碎片,在执行过程中会加上只读锁

22 硬优化

221 硬件三件套

1配置多核心和频率高的cpu,多核心可以执行多个线程

2配置大内存,提高内存,即可提高缓存区容量,因此能减少磁盘I/O时间,从而提高响应速度

3配置高速磁盘或合理分布磁盘:高速磁盘提高I/O,分布磁盘能提高并行 *** 作的能力

222 优化数据库参数

优化数据库参数可以提高资源利用率,从而提高MySQL服务器性能MySQL服务的配置参数都在mycnf或myini,下面列出性能影响较大的几个参数

223 分库分表

因为数据库压力过大,首先一个问题就是高峰期系统性能可能会降低,因为数据库负载过高对性能会有影响。另外一个,压力过大把你的数据库给搞挂了怎么办?所以此时你必须得对系统做分库分表 + 读写分离,也就是把一个库拆分为多个库,部署在多个数据库服务上,这时作为主库承载写入请求。然后每个主库都挂载至少一个从库,由从库来承载读请求。

224 缓存集群

如果用户量越来越大,此时你可以不停的加机器,比如说系统层面不停加机器,就可以承载更高的并发请求。然后数据库层面如果写入并发越来越高,就扩容加数据库服务器,通过分库分表是可以支持扩容机器的,如果数据库层面的读并发越来越高,就扩容加更多的从库。但是这里有一个很大的问题:数据库其实本身不是用来承载高并发请求的,所以通常来说,数据库单机每秒承载的并发就在几千的数量级,而且数据库使用的机器都是比较高配置,比较昂贵的机器,成本很高。如果你就是简单的不停的加机器,其实是不对的。所以在高并发架构里通常都有缓存这个环节,缓存系统的设计就是为了承载高并发而生。所以单机承载的并发量都在每秒几万,甚至每秒数十万,对高并发的承载能力比数据库系统要高出一到两个数量级。所以你完全可以根据系统的业务特性,对那种写少读多的请求,引入缓存集群。具体来说,就是在写数据库的时候同时写一份数据到缓存集群里,然后用缓存集群来承载大部分的读请求。这样的话,通过缓存集群,就可以用更少的机器资源承载更高的并发。

一个完整而复杂的高并发系统架构中,一定会包含:各种复杂的自研基础架构系统。各种精妙的架构设计因此一篇小文顶多具有抛砖引玉的效果,但是数据库优化的思想差不多就这些了

以上就是关于Linux 分布式系统基础设施全部的内容,包括:Linux 分布式系统基础设施、数据库的读写压力太大了,请问有什么方法、数据库压力大,怎么让多台服务器分担压力,有经验的联系我!有偿请教等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9317455.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-27
下一篇 2023-04-27

发表评论

登录后才能评论

评论列表(0条)

保存