asp实现站内数据库表搜索

asp实现站内数据库表搜索,第1张

搜索文件:

写个表单,传递网站名和网址。然后发送表单数据到该搜索文件。然后从数据库里判断最好是模糊搜索,查询结果会多一些。循环输出即可。

假如一下变量是接收的表单数据:

<!-- #数据库连接文件 -->

<%

Dim Names,Addressn

Names = RequestForm("Url_Name")

Addressn = RequestForm("Url_Url")

Dim rs,sql,i

sql = "Select From Url Where Url_Name like '"&Names&"' or Url_Url like '"&Addressn &"' "

Set rs=ConnExecute(sql)

'查询结果输出

if not rseof then

'这里需要加个循环 所有符合查询的结果

Responsewrite rs("Url_Name ") & "<br>"

Responsewrite rs("Url_Url") & "<br>"

'循环结束 很多种 你自己写一个

end if

'别忘了释放数据库连接

%>

真正意义上的搜索引擎,通常指的是收集了因特网上几千万到几十亿个网页并对网页中的每一个词(即关键词)进行索引,建立索引数据库的全文搜索引擎。当用户查找某个关键词的时候,所有在页面内容中包含了该关键词的网页都将作为搜索结果被搜出来。在经过复杂的算法进行排序后,这些结果将按照与搜索关键词的相关度高低,依次排列。现在的搜索引擎已普遍使用超链分析技术,除了分析索引网页本身的内容,还分析索引所有指向该网页的链接的URL、AnchorText、甚至链接周围的文字。所以,有时候,即使某个网页A中并没有某个词比如“恶魔撒旦”,但如果有别的网页B用链接“恶魔撒旦”指向这个网页A,那么用户搜索“恶魔撒旦”时也能找到网页A。而且,如果有越多网页(C、D、E、F……)用名为“恶魔撒旦”的链接指向这个网页A,或者给出这个链接的源网页(B、C、D、E、F……)越优秀,那么网页A在用户搜索“恶魔撒旦”时也会被认为更相关,排序也会越靠前。搜索引擎的原理,可以看做三步:从互联网上抓取网页→建立索引数据库→在索引数据库中搜索排序。从互联网上抓取网页利用能够从互联网上自动收集网页的Spider系统程序,自动访问互联网,并沿着任何网页中的所有URL爬到其它网页,重复这过程,并把爬过的所有网页收集回来。建立索引数据库由分析索引系统程序对收集回来的网页进行分析,提取相关网页信息(包括网页所在URL、编码类型、页面内容包含的关键词、关键词位置、生成时间、大小、与其它网页的链接关系等),根据一定的相关度算法进行大量复杂计算,得到每一个网页针对页面内容中及超链中每一个关键词的相关度(或重要性),然后用这些相关信息建立网页索引数据库。在索引数据库中搜索排序当用户输入关键词搜索后,由搜索系统程序从网页索引数据库中找到符合该关键词的所有相关网页。因为所有相关网页针对该关键词的相关度早已算好,所以只需按照现成的相关度数值排序,相关度越高,排名越靠前。最后,由页面生成系统将搜索结果的链接地址和页面内容摘要等内容组织起来返回给用户。搜索引擎的Spider一般要定期重新访问所有网页(各搜索引擎的周期不同,可能是几天、几周或几月,也可能对不同重要性的网页有不同的更新频率),更新网页索引数据库,以反映出网页内容的更新情况,增加新的网页信息,去除死链接,并根据网页内容和链接关系的变化重新排序。这样,网页的具体内容和变化情况就会反映到用户查询的结果中。互联网虽然只有一个,但各搜索引擎的能力和偏好不同,所以抓取的网页各不相同,排序算法也各不相同。大型搜索引擎的数据库储存了互联网上几亿至几十亿的网页索引,数据量达到几千G甚至几万G。但即使最大的搜索引擎建立超过二十亿网页的索引数据库,也只能占到互联网上普通网页的不到30%,不同搜索引擎之间的网页数据重叠率一般在70%以下。我们使用不同搜索引擎的重要原因,就是因为它们能分别搜索到不同的内容。而互联网上有更大量的内容,是搜索引擎无法抓取索引的,也是我们无法用搜索引擎搜索到的。你心里应该有这个概念:搜索引擎只能搜到它网页索引数据库里储存的内容。

这样的话,给你一个思路,你先根据这个库,查找里面所有表名,然后再根据表名,查找字段名,然后再查找所有不是数字或者是二进制的字段进行搜索,当然这个需要多次循环,多次调用,肯定是很麻烦的!肯定得使用游标,虽然效率低,但是这个是唯一的一个办法:declare @tabName VARCHAR(40) declare @colName VARCHAR(40)DECLARE @sql nVARCHAR(2000)

set @sql = '';

DECLARE tabCursor CURSOR FOR sELECT name From sysobjects WHERE xtype = 'u' --查找库中所有的表OPEN tabCursorFETCH NEXT FROM tabCursor INTO @tabName

WHILE @@fetch_status = 0

BEGIN

-- SET @sql = 'UPDATE ' + @tabName + ' SET '

DECLARE colCursor CURSOR FOR Select Name FROM SysColumns Where id=Object_Id(@tabName) --查找表中所有的字段

OPEN colCursor

FETCH NEXT FROM colCursor INTO @colName

set @sql = ' select 1 from '+@tabName+ ' where '+ @colName +' like ''%10%'' '

WHILE @@fetch_status = 0

BEGIN

-- SET @sql = @sql + @colName + '=REPLACE(' +@colName+ ',''XX'',''''),'

set @sql += CHAR(10)+CHAR(13)+ ' select 1 from '+@tabName+ ' where '+ @colName +' like ''%10%'' '

FETCH NEXT FROM colCursor INTO @colName

END

-- SET @sql = LEFT(@sql,LEN(@sql)-1)

-- print @sql

EXEC(@sql)

CLOSE colCursor

DEALLOCATE colCursor

FETCH NEXT FROM tabCursor INTO @tabName

ENDCLOSE tabCursorDEALLOCATE tabCursor 此方法经过验证,但是需要你进行简单的修改!

<php

$host_name="localhost"; //服务器名

$host_user="root"; //连接服务器的用户名

$host_pass="123456"; //连接服务器的密码

$db_name=""; //服务器上的可用数据库

$my_conn=mysql_connect($host_name,$host_user,$host_pass); //连接服务器

mysql_select_db($db_name,$my_conn); //选择 *** 作的数据库

mysql_query("SET NAMES utf-s"); //设置编码

$sql="select content from sheet where id=0 "//mysql语句

//从sheet表中查询id=0的content的值

$row = mysql_fetch_array(mysql_query($sql,$my_conn));//从mysql返回的结果中提取一 //行

>

分类: 医疗健康

解析:

计算机辅助药物设计的基本方法

21世纪新药研究的热点将集中于先导化合物的发掘与设计,其中使用计算机辅助设计是先导化合物设计的重要方法之一。计算机辅助药物设计是应用量子力学、分子动力学、构效关系等基础理论数据研究药物对酶、受体等的作用的药效模型,从而达到药物设计之目的。

计算机辅助药物设计的方法始于1980年代早期。当今,随着人类基因组计划的完成、蛋白组学的迅猛发展,以及大量与人类疾病相关基因的发现,药物作用的靶标分子急剧增加;同时,在计算机技术推动下,计算机药物辅助设计在近几年取得了巨大的进展。在我国,中科院上海药物所承担的国家863项目“基于蛋白质和核酸三维结构知识的药物设计”也致力于该领域的研究发展和改进药物分子设计的理论计算方法,并编制相应的软件,对一系列具有重要的药理作用的药物进行了三维定量构效关系和计算辅助药物设计的理论研究,发现了一些活性超过左旋氧氟沙星的化合物和活性超过银杏内酯的化合物。

为了便于公众了解计算机辅助药物设计的基本原理与方法,以及该领域的最新的进展,本文根据现有的相关文献对此作一综述。

计算机辅助药物设计的一般原理是,首先通过X-单晶衍射技等技术获得受体大分子结合部位的结构,并且采用分子模拟软件分析结合部位的结构性质,如静电场、疏水场、氢键作用位点分布等信息。然后再运用数据库搜寻或者全新药物分子设计技术,识别得到分子形状和理化性质与受体作用位点相匹配的分子,合成并测试这些分子的生物活性,经过几轮循环,即可以发现新的先导化合物。因此,计算机辅助药物设计大致包括活性位点分析法、数据库搜寻、全新药物设计。

1.活性位点分析法

该方法可以用来探测与生物大分子的活性位点较好地相互作用的原子或者基团。用于分析的探针可以是一些简单的分子或者碎片,例如水或者苯环,通过分析探针与活性位点的相互作用情况,最终可以找到这些分子或碎片在活性部位中的可能结合位置。由活性位点分析得到的有关受体结合的信息对于全新药物的设计具有指导性。目前,活性位点分析软件有DRID、GREEN、HSITE等。另外还有一些基于蒙特卡罗、模拟退火技术的软件如MCSS、HINT、BUCKETS等。

其中,GRID由Goodford研究小组开发,其基本原理是将受体蛋白的活性部位划分为有规则的网格点,将探针分子(水分子或甲基等)放置在这些网格点上,采用分子力场方法计算探针分子与受体活性部位各原子的相互作用能,这样便获得探针分子与受体活性部位相互作用的分布情况,从中可发现最佳作用位点。GRID最初运算的例子是用水分子作为探针分子,搜寻到了二氢叶酸还原酶(DHFR)活性部位中水的结合位点以及抑制剂的氢键作用位点。由此软件成功设计的药物有抗A型感冒病毒药物4-胍基Neu5Ac2en(GG167, RelenzaTM)。该化合物有很强的抗感冒病毒能力,克服了以往抗感冒病毒药物的耐药性缺陷,具有很好的市场前景。

MCSS是Miranker和Karplus在CHARMM力场基础上发展而来,它的基本要点是在运用 CHARMM力场进行分子动力学模拟时,取消溶剂分子间的非键相互作用。这样,在分子动力学模拟时,溶剂在能量合适的区域叠合在一起,从而提高了搜寻溶剂分子与受体分子结合区域的效率。小分子碎片(如水和苯分子)可当作溶剂分子,运用上述动力学方法搜寻出分子碎片与受体的结合区域,然后对每个碎片选择100-1000个拷贝,在低能碎片结合域进行能量优化。在最后的能量搜寻过程中,可以用随机取样或网格点的方法来实施。搜寻时每个碎片的各个拷贝可以作刚性转动,最后直接比较每个碎片各个拷贝与受体的结合能,以此选择碎片的最佳作用位点。2001年Adlington等利用MCSS对前列腺特异性免疫抗原(PSA)的活性位点进行了详细分析,以此对已有的PSA抑制剂进行结构优化,从而得到了迄今为止活性最高的PSA抑制剂。

2. 数据库搜寻

目前数据库搜寻方法分为两类。一类是基于配体的,即根据药效基团模型进行三维结构数据库搜寻。该类方法一般需先建立一系列活性分子的药效构象,抽提出共有的药效基团,进而在现有的数据库中寻找符合药效基团模型的化合物。该类方法中比较著名的软件有Catalyst和Unity,而以前者应用更普遍。另一类方法是基于受体的,也称为分子对接法,即将小分子配体对接到受体的活性位点,并搜寻其合理的取向和构象,使得配体与受体的形状和相互作用的匹配最佳。在药物设计中,分子对接方法主要用来从化合物数据库中搜寻与受体生物大分子有较好亲和力的小分子,从而发现全新的先导化合物。分子对接由于从整体上考虑配体与受体的结合效果,所以能较好地避免其他方法中容易出现的局部作用较好,整体结合欠佳的情况。目前具代表性的分子对接软件主要有 DOCK、F1exX和GOLD。

DOCK由Kuntz小组于1982年开发,最新版本为DOCK 5.0。DOCK的开发经历了一个由简单到复杂的过程:DOCK10考虑的是配体与受体间的刚性形状对接;DOCK20引入了“分而治之”算法,提高了计算速度;DOCK 30采用分子力场势能函数作为评价函数;DOCK 35引入了打分函数优化以及化学性质匹配等;DOCK40开始考虑配体的柔性;DOCK 50在前面版本基础上,采用C++语言重新编程实现,并进一步引入GB/SA打分。DOCK程序现已成功地应用于药物分子设计领域。 Kuntz等利用用DOCK程序研究HIV-1蛋白酶,根据分子相似性对剑桥晶体数据库进行搜寻,得到化合物haloperidol,通过测试,其对HIV-1蛋白酶的Ki值为100μmol/L;进一步的结构改造得到化合物thioletal,其IC50高达1 5μmol/L。DesJarlais利用DOCK程序的一个改进版target-DOCK搜寻HIV-1蛋白酶抑制剂,得到一系列HIV-1蛋白酶抑制剂,其中活性最高的化合物其Ki值为7μmol/L。

F1exX是一种快速、精确的柔性对接算法,在对接时考虑了配体分子的许多构象。F1exX首先在配体分子中选择一个核心部分,并将其对接到受体的活性部位,然后再通过树搜寻方法连接其余片断。F1exX的评价函数采用改进的Bhöm结合自由能函数。F1exX的对接算法建立在逐步构造策略的基础之上,分以下三步:第一步是选择配体的一个连接基团,称为核心基团;第二步将核心基团放置于活性部位,此时不考虑配体的其他部分;最后一步称为构造,通过在已放置好的核心基团上逐步增加其他基团,构造出完整的配体分子。F1exX对接一个典型的药物分子大约需要3分钟,表明它可用于中等规模的三维数据库搜寻;此外,由于其采用了经验结合自由能函数进行评价,结果可能要优于以相互作用能为评价函数的分子对接方法。因此,F1exX是一个非常有前途的药物设计方法,近年来发展迅速。

3.全新药物设计

数据库搜寻技术在药物设计中广为应用,该方法发现的化合物大多可以直接购买得到,即使部分化合物不能直接购买得到,其合成路线也较为成熟,可以从专利或文献中查得,这都大大加快了先导化合物的发现速度。但是,数据库搜寻得到的化合物通常都是已知化合物,而非新颖结构。近年来,全新药物设计越来越受到人们的重视,它根据受体活性部位的形状和性质要求,让计算机自动构建出形状、性质互补的新分子,该新分子能与受体活性部位很好地契合,从而有望成为新的先导化合物;它通常能提出一些新的思想和结构类型,但对所设计的化合物需要进行合成,有时甚至是全合成。全新药物设计方法出现的时间虽然不长,但发展极为迅速,现已开发出一批实用性较强的软件,其主要软件有LUDI、Leapfrog、GROW、SPROU以及北京大学来鲁华等开发的LigBuilder等,其中LUDI最为常用。

LUDI是由Bhöm开发的进行全新药物设计的有力工具,已广泛地被制药公司和科研机构使用,其特点是以蛋白质三维结构为基础,通过化合物片段自动生长的方法产生候选的药物先导化合物。它可根据用户确定好的蛋白质受体结合部位的几何形状和物理化学特征(氢键形成能力、疏水作用位点),通过对已有数据库中化合物的筛选并在此基础上自动生长或连接其他化合物的形式,产生大量候选先导化合物并按评估的分值大小排列,供下一步筛选;可以对已知的药物分子进行修改,如添加/去除基团、官能团之间的连接等。在受体蛋白质结构未知的情况下,此模块也可以根据多个已知的同系化合物结构的叠合确定功能团,再根据功能团的空间排列和理化性质推测可能的蛋白质受体结合部位特征,根据此特征进行新型药物设计。目前研究人员利用LUDI设计出数十个针对不同疾病的活性化合物。

参考文献

1.中国科技成果库(CSTAD):wanfangdata

2.宋云龙等 基于结构的计算机辅助药物设计方法学与应用研究,药学进展2002,26(6)-359-364

3.陈凯先等 计算机辅助药物设计——原理、方法及运用,上海科学技术出版社,2000

4.Von Itzstein M, Wu W Y et al Rational design of potent sialidase-based inhibitors of influenza virus replication Nature, 1993, 363: 418-423

5.Adlington R M, Baldwin J E et al Design, synthesis, and proposed active site binding ysis of monocylic 2-azetidinone inhibitors of prostate specific antigen J Med Chem, 2001, 44(10):1491-1508

6.Leapfrog Tripos Associates, St Louis, MO, USA

计算机辅助药物设计特点是通过模拟和计算受体与配体的这种相互作用,进行先导化合物的优化与设计。

计算机辅助药物设计(computer aided drug design)是以计算机化学为基础,通过计算机的模拟、计算和预算药物与受体生物大分子之间的关系,设计和优化先导化合物的方法。计算机辅助药物设计实际上就是通过模拟和计算受体与配体的这种相互作用,进行先导化合物的优化与设计。计算机辅助药物设计大致包括活性位点分析法、数据库搜寻、全新药物设计。

发展:

计算机辅助药物设计的方法始于1980年代早期。当今,随着人类基因组计划的完成、蛋白组学的迅猛发展,以及大量与人类疾病相关基因的发现,药物作用的靶标分子急剧增加;同时,在计算机技术推动下,计算机药物辅助设计在近几年取得了巨大的进展。

计算机辅助药物设计的原理:

计算机辅助药物设计的一般原理是,首先通过X-单晶衍射技等技术获得受体大分子结合部位的结构,并且采用分子模拟软件分析结合部位的结构性质,如静电场、疏水场、氢键作用位点分布等信息。然后再运用数据库搜寻或者全新药物分子设计技术。

识别得到分子形状和理化性质与受体作用位点相匹配的分子,合成并测试这些 分子的生物活性,经过几轮循环,即可以发现新的先导化合物。因此,计算机辅助药物设计大致包括活性位点分析法、数据库搜寻、全新药物设计。

以上就是关于asp实现站内数据库表搜索全部的内容,包括:asp实现站内数据库表搜索、请百度的是如何进行数据搜索的、如何在一个SQL数据库中搜索到特定值的记录等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9475100.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-28
下一篇 2023-04-28

发表评论

登录后才能评论

评论列表(0条)

保存