云计算属于新兴技术领域,群英云计算转一篇关于问题的学术报告吧。对您应该有所帮助。
1 引言
目前,人们正处于一个“无处不网、无时不网,人人上网、时时在线”的时代,图灵奖获得者吉姆·格雷(Jim Gray)认为,网络环境下每18个月产生的数据量等于过去几千年的数据量之和。目前互联网的数据具有海量增长、用户广泛、动态变化等特征。2010年,QQ同时在线的用户超过1亿人,淘宝一年交易次数比上年增长150%,视频服务Animoto在3天内通过Amazon将其服务能力迅速扩展至75万用户。
数据挖掘能够发现隐含在大规模数据中的知识,提高信息服务的质量。如伊朗事件中twitter快速传播假消息的识别、Amazon和淘宝网中商品关联关系分析,以及优酷网中视频个性化推荐等。海量数据挖掘在国家安全、国民经济和现代服务业中具有广泛应用,有助于提升网络环境下信息服务的质量,实现以人为本的信息服务。
从数据挖掘技术的发展历史看,随着互联网的蓬勃发展,数据的规模越来越大,从KB级发展到TB甚至PB级海量数据;数据挖掘的对象也变得越来越复杂,从数据库、到多媒体数据和复杂社会网络;数据挖掘的需求也从分类、聚类和关联到复杂的演化和预测分析;挖掘过程中的交互方式从单机的人机交互发展到现在社会网络群体的交互。这种发展给数据挖掘带来了巨大的挑战:对于网络环境下产生的TB级和PB级的复杂数据,需要有高效的海量数据挖掘算法;网络环境下大众的广泛参与,需要在数据挖掘算法中能够融入群体智慧;同时社会网络的迅速发展使得信息服务的个性化成为必然,要求能够满足即时组合的个性化挖掘服务。
云计算是一种基于互联网的、大众参与的计算模式,其计算资源(包括计算能力、存储能力、交互能力等)是动态、可伸缩、被虚拟化的,并以服务的方式提供 [1] 。具体表现在:云计算的动态和可伸缩的计算能力为高效海量数据挖掘带来可能性;云计算环境下大众参与的群体智能为研究集群体智慧的新的数据挖掘方法研究提供了环境;云计算的服务化特征使面向大众的数据挖掘成为可能。同时,云计算发展也离不开数据挖掘的支持,以搜索为例,基于云计算的搜索包括网页存储、搜索处理和前端交互三大部分。数据挖掘在这几部分中都有广泛应用,例如网页存储中网页去重、搜索处理中网页排序和前端交互中的查询建议,其中每部分都需要数据挖掘技术的支持。
因此,云计算为海量和复杂数据对象的数据挖掘提供了基础设施,为网络环境下面向大众的数据挖掘服务带来了机遇,同时也为数据挖掘研究提出了新的挑战性课题。
下面将对并行编程模型、基于并行编程模型高效海量数据挖掘算法,以及基于云计算的海量数据挖掘服务相关研究进行综述。
2 并行编程模型相关方法
为了使用户能够通过简单的开发来方便地达到并行计算的效果,研究人员提出了一系列的并行计算模型。并行计算模型在用户需求和底层的硬件系统之间搭建桥梁使得并行算法的表示变得更加直观,对大规模数据的处理更加便捷。根据用户使用硬件环境的不同,并行编程模型又可以分为在多核机器、GPU计算、大型计算机以及计算机集群上的多种类型。目前比较常用的并行编程接口和模型包括:
pThread接口[2]。pThread是在类Unix系统上进行多线程编程的通用API,为用户提供了一系列对线程进行创建、管理和各类 *** 作的函数,使用户能够方便地编写多线程程序。
MPI模型[3]。MPI的全称为消息传递接口(Message Passing Interface),它为用户提供了一系列的接口,使用户利用消息传递的方式来建立进程间的通信机制,从而方便地对各种算法进行并行实现。
MapReduce模型[4]。MapReduce模型是由谷歌公司提出的并行编程框架,它首先为用户提供分布式的文件系统,使用户能方便地处理大规模数据;然后将所有的程序运算抽象为Map和Reduce两个基本 *** 作,在Map阶段模型将问题分解为更小规模的问题,并在集群的不同节点上执行,在Reduce阶段将结果归并汇总。MapReduce是一个简单,但是非常有效的并行编程模型。
Pregel模型[5]。Pregel同样是由谷歌公司提出的专门针对图算法的编程模型,能够为大规模数据的图算法提供并行支持。一个典型的Pregel计算过程将在图上进行一系列的超级步骤(SuperSteps),在每个超级步骤中,所有顶点的计算都并行地执行用户定义的同一个函数,并通过一个“投票”机制来决定程序是否停止。
CUDA模型①。CUDA是由NVIDIA公司提出的一个基于GPU的并行计算模型。由于GPU在设计需求上与普通CPU不同,GPU通常被设计为能较慢地执行许多并发的线程,而不是较快的连续执行多个线程,这使得GPU在并行计算上有先天的优势。CUDA为用户提供了利用GPU计算的各种接口,使程序员能够像在普通电脑上进行CPU编程那样进行GPU程序的编写。
此外还有OpenMP、PVM、OpenCL等各种并行编程模型和方法。这些并行编程和方法一般都提供了主流编程语言的实现,从而使得用户能根据自身编程习惯来选用。
另一方面,随着云计算的不断推广,还出现了各种商用的并行计算/云计算平台,为用户提供并行计算服务。这其中比较著名的包括微软的Azure平台、Amazon公司的EC2平台、IBM公司的蓝云平台、谷歌公司的Google App Engine等。各大IT公司也纷纷开发自己的并行计算模型/框架作为自身技术服务的基本平台,这使得并行计算技术得到了更加快速的发展。
3 基于并行编程模型高效海量数据挖掘算法研究
为了实现海量数据上的数据挖掘,大量分布式并行数据挖掘算法被提出。Bhaduri et al[6]整理了一个十分详尽的并行数据挖掘算法文献目录,包含了关联规则学习、分类、聚类、流数据挖掘四大类分布式数据挖掘算法,同时还包括分布式系统、隐私保护等相关的研究工作。
MapReduce并行编程模型具有强大的处理大规模数据的能力,因而是海量数据挖掘的理想编程平台。数据挖掘算法通常需要遍历训练数据获得相关的统计信息,用于求解或优化模型参数。在大规模数据上进行频繁的数据访问需要耗费大量运算时间。为了提高算法效率,斯坦福大学Chu et al[7]提出了一种适用于大量机器学习算法的通用并行编程方法。通过对经典的机器学习算法进行分析可以发现,算法学习过程中的运算都能转化为若干在训练数据集上的求和 *** 作;求和 *** 作可以独立地在不同数据子集上进行,因此很容易在MapReduce编程平台上实现并行化执行。将大规模的数据集分割为若干子集分配给多个Mapper节点,在Mapper节点上分别执行各种求和 *** 作得到中间结果,最后通过Reduce节点将求和结果合并,实现学习算法的并行执行。在该框架下,Chu et al实现了十种经典的数据挖掘算法,包括线性回归、朴素贝叶斯、神经网络、主成分分析和支持向量机等,相关成果在NIPS 2006会议上发表。
Ranger et al[8]提出了一个基于MapReduce的应用程序编程接口Phoenix,支持多核和多处理器系统环境下的并行程序设计。Phoenix能够进行缓存管理、错误恢复和并发管理。他们使用Phoenix实现了K-Means、主成分分析和线性回归三种数据挖掘算法。
Gillick et al[9]对单程学习(Single-pass)、迭代学习(Iterative Learning)和基于查询的学习(Query-based Learning)三类机器学习算法在MapReduce框架下的性能分别做了评测。他们对并行学习算法涉及到的如何在计算节点之间的共享数据、如何处理分布式存储数据等问题进行了研究。
Mahout①是APS(Apache Software Foundation)旗下的一个开源数据挖掘项目,通过使用Apache Hadoop库,可以实现大规模数据上的并行数据挖掘,包括分类、聚类、频繁模式挖掘、回归、降维等算法,目前已经发布了四个版本。
4 基于云计算的海量数据挖掘服务研究
云计算除了给用户提供通用的并行编程模型和大规模数据处理能力之外,另一个重要的特点是为用户提供开放的计算服务平台。在数据挖掘方向,现在也有一系列的系统被开发出来,面向公众提供数据挖掘服务云计算平台。
Talia et al[10]提出可以从四个层次提供云计算数据挖掘服务:底层为组成数据挖掘算法的基本步骤;第二层为单独的数据挖掘服务,例如分类、聚类等;第三层为分布式的数据挖掘模式,例如并行分类、聚合式机器学习等;第四层为之前三层元素构成的完整的数据挖掘应用。在此设计基础上,他们设计了基于云计算的数据挖掘开放服务框架,并开发了一系列的数据挖掘服务系统,例如Weka4WS、Knowledge Grid、Mobile Data Mining Services、Mining@home等,用户可以利用图形界面定义自己的数据挖掘工作流,然后在平台上执行。
PDMiner[11]是由中国科学院计算技术研究所开发的基于Hadoop的并行分布式数据挖掘平台,该系统现在已经用于中国移动通信企业TB级实际数据的挖掘。PDMiner提供了一系列并行挖掘算法和ETL *** 作组件,开发的ETL算法绝大多数达到了线性加速比,同时具有很好的容错性。PDMiner的开放式架构可以使用户将算法组件经过简单配置方便地封装加载到系统中。
此外,商业智能领域的各大公司也提供面向企业的大规模数据挖掘服务,例如微策略、IBM、Oracle等公司都拥有自己的基于云计算的数据挖掘服务平台。
5 总结和展望
通过云计算的海量数据存储和分布计算,为云计算环境下的海量数据挖掘提供了新方法和手段,有效解决了海量数据挖掘的分布存储和高效计算问题。开展基于云计算特点的数据挖掘方法的研究,可以为更多、更复杂的海量数据挖掘问题提供新的理论与支撑工具。而作为传统数据挖掘向云计算的延伸和丰富,基于云计算的海量数据挖掘将推动互联网先进技术成果服务于大众,是促进信息资源的深度分享和可持续利用的新方法、新途径。
大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。
大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
一、大数据采集技术
数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。
互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿
零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策 *** 作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。
二、大数据预处理技术
主要完成对已接收数据的辨析、抽取、清洗等 *** 作。1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。
三、大数据存储及管理技术
大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。
开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。
开发大数据安全技术。改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。
四、大数据分析及挖掘技术
大数据分析技术。改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘涉及的技术方法很多,有多种分类法。根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习中,可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。
从挖掘任务和挖掘方法的角度,着重突破:
1可视化分析。数据可视化无论对于普通用户或是数据分析专家,都是最基本的功能。数据图像化可以让数据自己说话,让用户直观的感受到结果。
2数据挖掘算法。图像化是将机器语言翻译给人看,而数据挖掘就是机器的母语。分割、集群、孤立点分析还有各种各样五花八门的算法让我们精炼数据,挖掘价值。这些算法一定要能够应付大数据的量,同时还具有很高的处理速度。
3预测性分析。预测性分析可以让分析师根据图像化分析和数据挖掘的结果做出一些前瞻性判断。
4语义引擎。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。语言处理技术包括机器翻译、情感分析、舆情分析、智能输入、问答系统等。
5数据质量和数据管理。数据质量与管理是管理的最佳实践,透过标准化流程和机器对数据进行处理可以确保获得一个预设质量的分析结果。
六、大数据展现与应用技术
大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。在我国,大数据将重点应用于以下三大领域:商业智能、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。
非常多的,问答不能发link,不然我给你link了。有譬如Hadoop等开源大数据项目的,编程语言的,以下就大数据底层技术说下。
简单以永洪科技的技术说下,有四方面,其实也代表了部分通用大数据底层技术:
Z-Suite具有高性能的大数据分析能力,她完全摒弃了向上升级(Scale-Up),全面支持横向扩展(Scale-Out)。Z-Suite主要通过以下核心技术来支撑PB级的大数据:
跨粒度计算(In-DatabaseComputing)
Z-Suite支持各种常见的汇总,还支持几乎全部的专业统计函数。得益于跨粒度计算技术,Z-Suite数据分析引擎将找寻出最优化的计算方案,继而把所有开销较大的、昂贵的计算都移动到数据存储的地方直接计算,我们称之为库内计算(In-Database)。这一技术大大减少了数据移动,降低了通讯负担,保证了高性能数据分析。
并行计算(MPP Computing)
Z-Suite是基于MPP架构的商业智能平台,她能够把计算分布到多个计算节点,再在指定节点将计算结果汇总输出。Z-Suite能够充分利用各种计算和存储资源,不管是服务器还是普通的PC,她对网络条件也没有严苛的要求。作为横向扩展的大数据平台,Z-Suite能够充分发挥各个节点的计算能力,轻松实现针对TB/PB级数据分析的秒级响应。
列存储 (Column-Based)
Z-Suite是列存储的。基于列存储的数据集市,不读取无关数据,能降低读写开销,同时提高I/O 的效率,从而大大提高查询性能。另外,列存储能够更好地压缩数据,一般压缩比在5 -10倍之间,这样一来,数据占有空间降低到传统存储的1/5到1/10 。良好的数据压缩技术,节省了存储设备和内存的开销,却大大了提升计算性能。
内存计算
得益于列存储技术和并行计算技术,Z-Suite能够大大压缩数据,并同时利用多个节点的计算能力和内存容量。一般地,内存访问速度比磁盘访问速度要快几百倍甚至上千倍。通过内存计算,CPU直接从内存而非磁盘上读取数据并对数据进行计算。内存计算是对传统数据处理方式的一种加速,是实现大数据分析的关键应用技术。
以上就是关于云计算的海量数据挖掘工作是怎样实现的全部的内容,包括:云计算的海量数据挖掘工作是怎样实现的、大数据技术有哪些、大数据的数据整合和资源共享技术有哪些等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)