如何判断函数奇偶性

如何判断函数奇偶性,第1张

1 先分解函数为常见的一般函数,比如多项式x^n,三角函数,判断奇偶性

2 根据分解的函数之间的运算法则判断,一般只有三种种f(x)g(x)、f(x)+g(x),f(g(x))(除法或减法可以变成相应的乘法和加法)

3 若f(x)、g(x)其中一个为奇函数,另一个为偶函数,则f(x)g(x)奇、f(x)+g(x)非奇非偶函数,f(g(x))奇

4 若f(x)、g(x)都是偶函数,则f(x)g(x)偶、f(x)+g(x)偶,f(g(x))偶

5 若f(x)、g(x)都是奇函数,则f(x)g(x)偶、f(x)+g(x)奇,f(g(x))奇

扩展资料:

偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。

奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数。

定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴成轴对称图形。

f(x)为奇函数《==》f(x)的图像关于原点对称

点(x,y)→(-x,-y)

奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

(1)奇函数在对称的单调区间内有相同的单调性

偶函数在对称的单调区间内有相反的单调性

(2)若f(x+a)为奇函数,则f(x)的图像关于点(a,0)对称

若f(x+a)为偶函数,则f(x)的图像关于直线x=a对称

(3)在f(x),g(x)的公共定义域上:奇函数±奇函数=奇函数

偶函数±偶函数=偶函数

奇函数×奇函数=偶函数

偶函数×偶函数=偶函数

奇函数×偶函数=奇函数

上述奇偶函数乘法规律可总结为:同偶异奇

参考资料:

百度百科——函数奇偶性

判断一个函数的奇偶性,可以遵循下列方法:
当f(x)函数满足,f(-x)=f(x)时,则该函数是偶函数;
当f(x)函数满足,f(-x)=-f(x)时,则该函数是奇函数;
当f(x)函数不满足,f(-x)=f(x)或f(-x)=-f(x)时,则该函数是非偶非奇函数。
例如:判断函数y=x²sinx的奇偶性
f(-x)=(-x)²sin(-x)=-x²sinx=-f(x)
所以,函数y=x²sinx是奇函数。

判断函数奇偶性的方法有两种,一种是用函数图像,如果能迅速画出函数图像来,只要图像关于Y轴对称那么它就是一偶函数,如果图像关于原点成中心对称,那么它就是奇函数。另一种方法就是用定义来做了,分成两步。第一步就是看定义域,如果定义域关于零对称了,那么做下一步,如果定义域不对称,就是非奇非偶函数了。第二步,就是看f(-x)=f(x),则为偶函数;若f(-x)=-f(x),则为奇函数。
你题目中第一个根号里面是x²-2吧。
本题,用定义来做。先看定义域,x²-2≥0且2-x²≥0,解得:定义域为{-√2,√2},只有两个元素。当然关于零对称了。做第二步,显然f(-x)=f(x)。所以是偶函数。
与老师答案不一致,除非你写错题目了。用正确方法自己再做一下,要相信自己。

1、对称性判断。奇函数、偶函数的定义中,首先函数定义域D关于原点对称。它们的图像特点是:奇函数的图像关于原点对称,偶函数的图像关于X轴对称。即f(-x)=-f(x)为奇函数,f(-x)=f(x)为偶函数
2、利用一些已知函数的奇偶性及下列准则:两个奇函数的代数和是奇函数;两个偶函数的代数和是偶函数;奇函数与偶函数的和既非奇函数,也非偶函数;两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;奇函数与偶函数的乘积是奇函数。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/10265477.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-07
下一篇 2023-05-07

发表评论

登录后才能评论

评论列表(0条)

保存