解三次函数

解三次函数,第1张

x为复数时当然有三个根
您所说必为实根,但解法要以复根运算
若是仅判断解的情况,可以求一阶导数画图,如楼上;
若是想求解,教给你一种方法:
1首先对左侧多项式求导两次,令之得0求得拐点
2然后作变换x=t+(拐点)带入原方程化为无平方三次方程(所以你就明白若是本身无平方者,不用进行此二步骤),并将x^3单独留在等号左侧
3令t=s+p,对比等式两边,得到两个方程:s^3+p^3=,sp=
第二个式子带入第一个式子,得到一个关于s^3或p^3的一个一元二次方程,解之
(注意:此处有一定性分析,即二次方程判别式大于等于或小于0当如何
大于0有一实根和一对共轭复根
等于0有三个实根
小于0有三个不同实根)
根据对称性直接得出p^3或s^3(这里s^3+p^3=)
4(由于您可能不知道复数的根的解法,特加此步提示)开三次根总会得到三个复数
5x=s+p+(拐点)
您的这道题的唯一一个实根是(2/3)+[(三次根)((38/9)+(2/27)[(二次根)(3233)])]+[(三次根)((38/9)-(2/27)[(二次根)(3233)])]
用计算器计算大约得29205440493553901955847525816694
也许您对回答不尽满意,但是请将这种方法告诉想知道的朋友,也不枉我第一次将此法打到网上,谢谢!

1三次函数求极值:
三次函数的导函数为0,求出极值点坐标,再判断极值点左右侧的单调性
如果左侧递减,右侧递增,则该极值点为极小值点。如果左侧递增,右侧递减,则该极值点为极大值。2
用设参法可求的最终解。
以一道四次函数解析为例:
X^4-4X^2+4=0
设X^2为t
则该三次函数转化成为t^2-4t+4=0
则可按平时的二次函数求解得到t=2
所以即X^2=2
所以最终解得X等于正根号下2,或负根号下2
2已知三次函数f(x)的导函数是f'(x),且f(0)=3,f‘(0)=0,f'(1)=-3,f'(2)=0,求函数f(x)
设三次函数为f(x)=ax^3+bx^2+cx+d
故,导数为f'(x)=3ax^2+2bx+c
由题意知,d=3
c=0
3a+2b=-3
12a+6b=0
解得:a=3,b=-6
故函数是f(x)=3x^3-6x^2+3

1因式分解法
因式分解法不是对所有的三次方程都适用,只对一些三次方程适用.对于大多数的三次方程,只有先求出它的根,才能作因式分解.当然,因式分解的解法很简便,直接把三次方程降次.例如:解方程x^3-x=0 对左边作因式分解,得x(x+1)(x-1)=0,得方程的三个根:x1=0,x2=1,x3=-1
2另一种换元法
对于一般形式的三次方程,先用上文中提到的配方和换元,将方程化为x+px+q=0的特殊型.令x=z-p/3z,代入并化简,得:z-p/27z+q=0再令z=w,代入,得:w+p/27w+q=0.这实际上是关于w的二次方程.解出w,再顺次解出z,x
3盛金公式解题法
三次方程应用广泛。用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法.
盛金公式
一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。 重根判别式:A=b^2-3ac;B=bc-9ad;C=c^2-3bd, 总判别式:Δ=B^2-4AC。 当A=B=0时,盛金公式①: X1=X2=X3=-b/(3a)=-c/b=-3d/c。 当Δ=B^2-4AC>0时,盛金公式②: X1=(-b-(Y1)^(1/3)-(Y2)^(1/3))/(3a); X2,3=(-2b+(Y1)^(1/3)+(Y2)^(1/3))/(6a)±i3^(1/2)((Y1)^(1/3)-(Y2)^(1/3))/(6a), 其中Y1,2=Ab+3a(-B±(B^2-4AC)^(1/2))/2,i^2=-1。 当Δ=B^2-4AC=0时,盛金公式③: X1=-b/a+K; X2=X3=-K/2, 其中K=B/A,(A≠0)。 当Δ=B^2-4AC0,-1<T<1)。
盛金判别法
①:当A=B=0时,方程有一个三重实根; ②:当Δ=B^2-4AC>0时,方程有一个实根和一对共轭虚根; ③:当Δ=B^2-4AC=0时,方程有三个实根,其中有一个两重根; ④:当Δ=B^2-4AC<0时,方程有三个不相等的实根。
盛金定理
当b=0,c=0时,盛金公式①无意义;当A=0时,盛金公式③无意义;当A≤0时,盛金公式④无意义;当T<-1或T>1时,盛金公式④无意义。 当b=0,c=0时,盛金公式①是否成立?盛金公式③与盛金公式④是否存在A≤0的值?盛金公式④是否存在T<-1或T>1的值?盛金定理给出如下回答: 盛金定理1:当A=B=0时,若b=0,则必定有c=d=0(此时,方程有一个三重实根0,盛金公式①仍成立)。 盛金定理2:当A=B=0时,若b≠0,则必定有c≠0(此时,适用盛金公式①解题)。 盛金定理3:当A=B=0时,则必定有C=0(此时,适用盛金公式①解题)。 盛金定理4:当A=0时,若B≠0,则必定有Δ>0(此时,适用盛金公式②解题)。 盛金定理5:当A<0时,则必定有Δ>0(此时,适用盛金公式②解题)。 盛金定理6:当Δ=0时,若B=0,则必定有A=0(此时,适用盛金公式①解题)。 盛金定理7:当Δ=0时,若B≠0,盛金公式③一定不存在A≤0的值(此时,适用盛金公式③解题)。 盛金定理8:当Δ<0时,盛金公式④一定不存在A≤0的值。(此时,适用盛金公式④解题)。 盛金定理9:当Δ<0时,盛金公式④一定不存在T≤-1或T≥1的值,即T出现的值必定是-1<T<1。 显然,当A≤0时,都有相应的盛金公式解题。 注意:盛金定理逆之不一定成立。如:当Δ>0时,不一定有A<0。 盛金定理表明:盛金公式始终保持有意义。任意实系数的一元三次方程都可以运用盛金公式直观求解。 当Δ=0(d≠0)时,使用卡尔丹公式解题仍存在开立方。与卡尔丹公式相比较,盛金公式的表达形式较简明,使用盛金公式解题较直观、效率较高;盛金判别法判别方程的解较直观。重根判别式A=b^2-3ac;B=bc-9ad;C=c^2-3bd是最简明的式子,由A、B、C构成的总判别式Δ=B^2-4AC也是最简明的式子(是非常美妙的式子),其形状与一元二次方程的根的判别式相同;盛金公式②中的式子(-B±(B^2-4AC)^(1/2))/2具有一元二次方程求根公式的形式,这些表达形式体现了数学的有序、对称、和谐与简洁美。
盛金公式出处
以上盛金公式的结论,发表在《海南师范学院学报(自然科学版)》(第2卷,第2期;1989年12月,中国海南。国内统一刊号:CN46-1014),第91—98页。范盛金,一元三次方程的新求根公式与新判别法。

形如y=ax³+bx²+cx+d(a≠0,b,c,d为 常数)的函数叫做三次函数(cubic function)。 三次函数的 图象是一条曲线——回归式 抛物线(不同于普通抛物线)。

三次函数性态的五个要点

⒈三次函数y=f(x)在(-∞,+∞)上的 极值点的个数

⒉三次函数y=f(x)的图象与x 轴 交点个数

⒊ 单调性问题

⒋三次函数f(x)图象的 切线条数

⒌融合三次函数和 不等式,创设情境求参数的范围

y'=3ax^2+2bx+c
x=±1时,y'=0
x=1时,3a+2b+c=0
x=-1时,3a-2b+c=0
x=1时,y=a+b+c=-1
联立上面三式得
a=1/2,b=0,c=-3/2

我们把函数y=f(x)的图像与横轴的交点的横坐标称为这个函数的零点,即方程的根。
f(x)的零点就是方程f(x)=0的解。这样就为我们提供了一个通过函数性质确定方程的途径。函数的零点个数就决定了相应方程实数解的个数。
若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间(a,b)内至少有一个实数解。
一般结论:函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图像与x轴(直线x=0)焦点的横坐标,所以方程f(x)=0有实数根推出函数y=f(x)的图像与函数y=g(x)的图像与x轴有交点推出函数y=f(x)有零点。
更一般的结论:函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的实数根,也就是函数y=f(x)的图像与函数y=g(x)的图像交点的横坐标,这个结论很有用。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/10376492.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-08
下一篇 2023-05-08

发表评论

登录后才能评论

评论列表(0条)

保存