图中的剪枝过程被称为什么剪枝

图中的剪枝过程被称为什么剪枝,第1张

图中的剪枝过程被称为Alpha剪枝。

Alpha-beta剪枝是一种搜索算法,用以减少极小化极大算法(Minimax算法)搜索树的节点数。这是一种对抗性搜索算法,主要应用于机器游玩的二人游戏(如井字棋、象棋、围棋)。当算法评估出某策略的后续走法比之前策略的还差时,就会停止计算该策略的后续发展。该算法和极小化极大算法所得结论相同,但剪去了不影响最终决定的分枝。

alpha-beta算法原理:

alpha-beta剪枝算法是基于极大极小搜索算法的。极大极小搜索策略是考虑双方对弈若干步之后,从可能的步中选一步相对好的走法来走,在有限的搜索范围内进行求解,可以理解为规定一个有限的搜索深度。

为此要定义一个静态估计函数f,以便对棋局的势态做出优劣的估计,这个函数可根据棋局的优劣势态的特征来定义。这里规定,MAX代表程序方,MIN代表对手方,P代表一个棋局(即一个状态)。有利于MAX的势态,f(p)取正值,有利于MIN的势态,f(p)去负值,势态均衡,f(p)取零。

极大极小过程,以及阿尔法-贝塔剪纸。极小极大搜索方法是博弈树搜索的基本方法,现在博弈树搜索中最常用的α-β剪枝搜索方法,就是从这一方法发展而来的。

首先假定,有一个评价函数可以对所有的棋局进行评估。当评价函数值大于0时,表示棋局对我方有利,对对方不利。当评价函数小于0时,表示棋局对我方不利,对对方有利。而评价函数值越大,表示对我方越有利。当评价函数值等于正无穷大时,表示我方必胜。评价函数值越小,表示对我方越不利。当评价函数值等于负无穷大时,表示对方必胜。假设双方都是对弈高手,在只看一步棋的情况下,我方一定走评价函数值最大的一步棋,而对方一定走评价函数值最小的一步棋。会下棋的读者都知道,在只看一步的情况下最好的棋,从全局来说不一定就好,还可能很不好。因此为了走出好棋,必须多看几步,从多种可能状态中选择一步好棋。

想一想人是如何下棋的呢?人实际上采用的是一种试探性的方法。首先假定走了一步棋,看对方会有那些应法,然后再根据对方的每一种应法,看我方是否有好的回应......这一过程一直进行下去,直到若干步以后,找到了一个满意的走法为止。初学者可能只能看一、两个轮次,而高手则可以看几个,甚至十几个轮次。

极小极大搜索方法,模拟的就是人的这样一种思维过程。当轮到我方走棋时,首先按照一定的搜索深度生成出给定深度d以内的所有状态,计算所有叶节点的评价函数值。然后从d-1层节点开始逆向计算:对于我方要走的节点(用MAX标记,称为极大节点)取其子节点中的最大值为该节点的值(因为我方总是选择对我方有利的棋);对于对方要走的节点(用MIN标记,称为极小节点)取其子节点中的最小值为该节点的值(对方总是选择对我方不利的棋)。一直到计算出根节点的值为止。获得根节点取值的那一分枝,即为所选择的最佳走步。

在图3.5所示的例子中,假定搜索深度为2,D~J是7个叶节点,在它们下边括号中的数字是这些节点的评价函数值(假定可以计算得到)。A、B、C是三个极小节点,它们分别取各自子节点最小值为自己的值,得到三个节点的值分别为-6、-2和-4。s是极大节点,从A、B、C三个节点的值中取最大值,得到-2。由于-2来自于节点B,所以搜索的结果是应选择B作为我方的走步。对于我方来说,-2并不是一个好的结果,但却是在对方不犯错误的情况下,对我方最有利的结果。因为从图中可以看出,如果选择A为我方的走步,如果对方回应D的话,我方可以得到评价值9,固然对我方有利。但是如果对方是一个高手的话,他一定回选择E,而不是D。在这种情况下,我方只能得到-6,结果岂不是更差。因此,极小极大过程是一种假定对手每次回应都正确的情况下,如何从中找出对我方最有利的走步的搜索方法。

值得注意的是,不管设定的搜索深度是多少层,经过一次搜索以后,只决定了我方一步棋的走法。等到对方回应一步棋之后,需要在新的棋局下重新进行搜索,来决定下一步棋如何走。极小极大搜索策略是考虑双方对弈若干步之后,从可能的走步中选一步相对好棋的着法来走,即在有限的搜索深度范围内进行求解。为此要定义一个静态估计函数f,以便对棋局的势态(节点)作出优劣估值,这个函数可根据势态优劣特征来定义(主要用于对端节点的"价值"进行度量)。一般规定有利于MAX的势态,f(p)取正值,有利于MIN的势态,f(p)取负值,势均力敌的势态,f(p)取0值。若f(p)=+∞,则表示MAX赢,若f(p)=-∞,则表示MIN赢。下面的讨论规定:顶节点深度d=0,MAX代表程序方,MIN代表对手方,MAX先走。

图3.5是一个表示考虑两步棋的例子,图中端节点给出的数字是用静态函数f(p)计算得到,其他节点不用f(p)估计,因为不够精确,而应用倒推的办法取值。例如A、B、C是MIN走步的节点,MAX应考虑最坏的情况,故其估值应分别取其子节点f(p)估值中最小者,而s是MAX走步的节点,可考虑最好的情况,故估值应取A、B、C值中的最大者。这样求得f(s)=-2,依此确定了相对较优的走步应是走向B,因为从B出发,对手不可能产生比f(s)=-2更差的效果。实际上可根据资源条件,考虑更多层次的搜索过程,从而可得到更准确的倒推值,供MAX选取更正确的走步。当用端节点的静态估计函数f(p)求倒推值时,两位选手应采取不同的策略,从下往上逐层交替使用极小和极大的选值方法,故称极小极大过程。

beta剪枝是相对于极大极小节点而言。

算法原理:

alpha-beta剪枝算法是基于极大极小搜索算法的。极大极小搜索策略是考虑双方对弈若干步之后,从可能的步中选一步相对好的走法来走,在有限的搜索范围内进行求解,可以理解为规定一个有限的搜索深度。

为此要定义一个静态估计函数f,以便对棋局的势态做出优劣的估计,这个函数可根据棋局的优劣势态的特征来定义。这里规定,MAX代表程序方,MIN代表对手方,P代表一个棋局(即一个状态)。有利于MAX的势态,f(p)取正值,有利于MIN的势态,f(p)去负值,势态均衡,f(p)取零。

定义极大层的下界为alpha,极小层的上界为beta,alpha-beta剪枝规则描述如下:

(1)alpha剪枝。若任一极小值层结点的beta值不大于它任一前驱极大值层结点的alpha值,即alpha(前驱层) >= beta(后继层),则可终止该极小值层中这个MIN结点以下的搜索过程。这个MIN结点最终的倒推值就确定为这个beta值。

(2)beta剪枝。若任一极大值层结点的alpha值不小于它任一前驱极小值层结点的beta值,即alpha(后继层) >= beta(前驱层),则可以终止该极大值层中这个MAX结点以下的搜索过程,这个MAX结点最终倒推值就确定为这个alpha值。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11447409.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-16
下一篇 2023-05-16

发表评论

登录后才能评论

评论列表(0条)

保存