求函数的极值,求详细步骤

求函数的极值,求详细步骤,第1张

函数f'(x)的极值

1、找到等式f'(x)=0的根

2、在等式的左右检查f'(x)值的符号。如果为负数,则f(x)在这个根得到最大值;如果为正数则f(x)在这个根得世茄掘到搜核最小值。

3、判断f'(x)无意义的点。首先可以找到f'(x)=0的根和f'(x)的无意义点。这些点被称为极点,然后根据定义来判断。

4、函数z=f(x,y)的极值的方法描述如下:

(1)解方程式f(x)(x,y)=0,fy(x,y)=0,求一个实数解,可以求所有的塞音;

(2)对于每个停止点(x 0,y 0),找到二阶偏导数纳搏的值a,b,c;

(3)确定ac-b2的符号,并根据定理2的结论确定f(x 0,y 0)是一个最大值、最大值还是最小值。

上面介绍的极值必要条件和充分条件都是对函数在极值点可导的情形才有效的。当函数仅在区域D内的某些孤立点(x, y)不可导时,这些点当然不是函数的驻点,但这种点有可能是函数的极值点,要注意另行讨论。

扩展资料:

函数在数学上的定义:给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A).那么这个关系式就叫函数关系式,简称函数。

实函数(Real function)是指定义域和值域均为实数域的函数。它的特性之一是一般可以在坐标上画出图形。

虚函数是面向对象程序设计中的一个重要的概念。当从父类中继承的时候,虚函数和被继承的函数具有相同的签名。但是在运行过程中,运行系统将根据对象的类型,自动地选择适当的具体实现运行。虚函数是面向对象编程实现多态的基本手段。

参考资料:百度百科函数极值

极值的求法:

(1)求导数f'(x);

(2)求方程f'(x)=0的根;

(3)检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个培漏弊根处取得极小值。

极值函数:

若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极搜判值点。极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。

设函数f(x)在x。附近有定义,如果对x。的去心邻域,都有f(x)<f(x),则f(x)是函数f(x)的一个极大值;如果对x。附近的所有的点,都有f(x)>f(x),则f(x)是函数f(x)的一个极配族小值,对应的极值点就是x。

①首先确定函数定义域。

②二次函数通过配方或分解因式可求极值。

③通过求导是求极值最常用方法。

f'(x)=0,则此时有极值。

>0为↑

<0为↓

判断是极大还是极小值。

例宴败如:

①求函数的二阶导数,将极值点代入,二级导数值>0

为极小值点,反之为极大值点

二级导数值=0,有可能不是极值点;

②判断极值点左右邻域的导数值的正负:左+右-

为极大值点,左-右+

为极小值点,左右正负不变,不是极值点。

极大值和极小值

也可以为集合定义极大值和极小值。一般来说蔽派,如果有序晌并颤集S具有极大的元素m,则m是极大元素。此外,如果S是有序集T的子集,并且m是相对于由T诱导的阶数的S的极大元素,则m是T中S的极小上限。类似的结果适用于极小元素,极小元素和极大的下限。

在一般的部分顺序的情况下,极小元素(小于所有其他元素)不应该与极小元素混淆(没有更小)。同样,部分有序集合(poset)的极大元素是集合中包含的集合的上限,而集合A的极大元素m是A的元素,使得如果m≤b(对于任何b在A)然后m = b。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/8241635.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-14
下一篇 2023-04-14

发表评论

登录后才能评论

评论列表(0条)

保存