outx= fzero(fun,x0)
其中fun是要求解函数的句柄,fun要求只有一个输入变量x
x0是你给出的初始x值,
函数会在这个初始x值开始在附近需找一个x值,使得fun返回值为0
返回值outx就是也就是找到fun=0的根
你程序原来有,x,y两组数据
首先用p=polyfit(x,y,2),将数据拟合为二次函数
然后x0 = fzero( @(x)polyval(p,x)-0.5, (x(1)+x(end))/2 )
就是用fzero 找出这个二次函数=0.5时的根
而(x(1)+x(end))/2就是原来数据的第一个值和最后一个值的平均值
在这里用这个平均值,作为初始值,在其附近寻找 二次函数=0.5这个方程的根
引用一下别人的df是自由度
normr是标准偏差
MATLAB软件提供了基本的曲线拟合函数的命令.
多项式函数拟合:a=polyfit(xdata,ydata,n)
其中n表示多项式的最高阶数,xdata,ydata为将要拟合的数据,它是用数组的方式输入.输出参数a为拟合多项式 y=a1xn+...+anx+a n+1的系数
多项式在x处的值y可用下面程序计算.
y=polyval(a,x,m)
线性:m=1, 二次:m=2, …
polyfit的输出是一个多项式系数的行向量。为了计算在xi数据点的多项式值,调用MATLAB的函数polyval。
例:
x=0:0.1:1
y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]
A=polyfit(x,y,2)
Z=polyval(A,x)
Plot(x,y,’r*’,x,z,’b’)
polyfit不能保证你每次都能得到最优解,math的答案是使用数值计算。
个人认为,对于这种非线性的曲线,尽量不要使用ployfit, ployfit多项式抑合适合线性方程!!
用polyfit()函数去拟合这么复杂的曲线不太合适,polyfit()函数对于数据遵循多项式分布是比较好的,一般来说,利用polyfit()函数拟合的阶数不要超过5阶。
如果是不需要得到拟合曲线的函数,只是把这些点利用一些光滑曲线连接,建议使用三次样条函数spline()进行插值即可。
polyfit.m 在MATLAB安装目录下 \toolbox\matlab\polyfun
function [p,S,mu] = polyfit(x,y,n)
%POLYFIT Fit polynomial to data.
% P = POLYFIT(X,Y,N) finds the coefficients of a polynomial P(X) of
% degree N that fits the data Y best in a least-squares sense. P is a
% row vector of length N+1 containing the polynomial coefficients in
% descending powers, P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + P(N+1).
%
% [P,S] = POLYFIT(X,Y,N) returns the polynomial coefficients P and a
% structure S for use with POLYVAL to obtain error estimates for
% predictions. S contains fields for the triangular factor (R) from a QR
% decomposition of the Vandermonde matrix of X, the degrees of freedom
% (df), and the norm of the residuals (normr). If the data Y are random,
% an estimate of the covariance matrix of P is (Rinv*Rinv')*normr^2/df,
% where Rinv is the inverse of R.
%
% [P,S,MU] = POLYFIT(X,Y,N) finds the coefficients of a polynomial in
% XHAT = (X-MU(1))/MU(2) where MU(1) = MEAN(X) and MU(2) = STD(X). This
% centering and scaling transformation improves the numerical properties
% of both the polynomial and the fitting algorithm.
%
% Warning messages result if N is >= length(X), if X has repeated, or
% nearly repeated, points, or if X might need centering and scaling.
%
% Class support for inputs X,Y:
% float: double, single
%
% See also POLY, POLYVAL, ROOTS.
% Copyright 1984-2004 The MathWorks, Inc.
% $Revision: 5.17.4.5 $ $Date: 2004/07/05 17:01:37 $
% The regression problem is formulated in matrix format as:
%
%y = V*por
%
% 3 2
%y = [x x x 1] [p3
% p2
% p1
% p0]
%
% where the vector p contains the coefficients to be found. For a
% 7th order polynomial, matrix V would be:
%
% V = [x.^7 x.^6 x.^5 x.^4 x.^3 x.^2 x ones(size(x))]
if ~isequal(size(x),size(y))
error('MATLAB:polyfit:XYSizeMismatch',...
'X and Y vectors must be the same size.')
end
x = x(:)
y = y(:)
if nargout >2
mu = [mean(x)std(x)]
x = (x - mu(1))/mu(2)
end
% Construct Vandermonde matrix.
V(:,n+1) = ones(length(x),1,class(x))
for j = n:-1:1
V(:,j) = x.*V(:,j+1)
end
% Solve least squares problem.
[Q,R] = qr(V,0)
ws = warning('off','all')
p = R\(Q'*y) % Same as p = V\y
warning(ws)
if size(R,2) >size(R,1)
warning('MATLAB:polyfit:PolyNotUnique', ...
'Polynomial is not uniquedegree >= number of data points.')
elseif condest(R) >1.0e10
if nargout >2
warning('MATLAB:polyfit:RepeatedPoints', ...
'Polynomial is badly conditioned. Remove repeated data points.')
else
warning('MATLAB:polyfit:RepeatedPointsOrRescale', ...
['Polynomial is badly conditioned. Remove repeated data points\n' ...
' or try centering and scaling as described in HELP POLYFIT.'])
end
end
r = y - V*p
p = p.' % Polynomial coefficients are row vectors by convention.
% S is a structure containing three elements: the triangular factor from a
% QR decomposition of the Vandermonde matrix, the degrees of freedom and
% the norm of the residuals.
S.R = R
S.df = length(y) - (n+1)
S.normr = norm(r)
q=1:3;i=find(q>0,1) %找到q中第一个大于零的数的下标,存到变量i中
ii=q(i) %将q中第i个数,存到ii中
%这两句之后,i就是从q找到的大于0的第一个数的下标,ii等于这个数
while(~isempty(ii)&&(iter>0)) %当ii不是空矩阵并且iter大于零的时候执行下面循环
q(q==ii)=0%q中所有等于ii的数都改清0
[v,j]=max(w(ii,:)-p) %返回w中第ii列减去p之后的最大值 v,以及最大值的位置j
........
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)