我在网上找到了一个MATLAB 卡尔曼滤波程序,但是不能运行,问别人说这是主程序和子程序之间的关系?

我在网上找到了一个MATLAB 卡尔曼滤波程序,但是不能运行,问别人说这是主程序和子程序之间的关系?,第1张

你下的程序应该是一个子程序,简单讲就是一个函数。函数有自变量和因变量对吧,对应于子程序的输入和输出。 所以你要用这个程序的话,需要自己写一个主程序,在主程序中定义子程序的输入(即自变量),带入到子程序中,然后子程序会输出你所需要的结果,带回到主程序中进行你想要的 *** 作,比如画图等。

我可以提示你中值平均法:读模拟量值,扫描相加,例如100次相加后的值,同时计数器记时,记满100次后,让相加 的值除以100得到的值为滤波后的值。此时计数器和,扫描相加的值全部清零。

1.新建工程,新建原理图

2.在原理图界面,【DG】》【Filter】,d出滤波器选择窗口,点击第一项

d出新的滤波器设计窗口

2.单击

在刚建立的原理图元件库d出

3.选择双端口低通滤波器,添加到原理图中,按esc结束

4.回到滤波器设计向导, *** 作如图

5.选择Filter Assistant,如图

6.响应类型

7.设置如图,刷新后响应曲线如图

8.点击【Design】,系统自动生成集总参数滤波器

9.返回原理图,双击滤波器模型,查看参数

10.单击【CO】,选中【SA】,勾选【Display...】,结果如图

11.查看子电路,选中滤波器模型,单击如图,子电路如图

12.回到设计向导,单击【SA】,起始步长设置如图,单击Simulate仿真

14.至此,一个集总参数低通滤波器设计完成近用mega8做一个AD转换,一开始滤波马马虎虎带过,结果数据跳的不行

最后还得做滤波:1.硬件滤波2.软件滤波

硬件————————

采样口到AD口之间要加滤波电路,最简单的RC滤波也可,串个1K的电阻,下拉一个30pF的电容,有条件的可以做有源的,加个电压跟随。AVCC口一定要串10mH的电感,最好是扼流圈,直流电阻要小!再接100nF的电容到地。总之,这块一定要按datasheet来做。

对了,绝对不要用内部基准!不准。

为了减小数字电路部分对AD的噪声,两路电路一点共地,这很重要。

软件—————————

软件滤波的方法很多,以下方法来自匠人!

1、限幅滤波法(又称程序判断滤波法)

A、方法:

根据经验判断,确定两次采样允许的最大偏差值(设为A)

每次检测到新值时判断:

如果本次值与上次值之差<=A,则本次值有效

如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值

B、优点:

能有效克服因偶然因素引起的脉冲干扰

C、缺点

无法抑制那种周期性的干扰

平滑度差

/*A值可根据实际情况调整

value为有效值,new_value为当前采样值

滤波程序返回有效的实际值*/

#define A 10

char value

charfilter()

{

char new_value

new_value = get_ad()

if ( ( new_value - value >A ) || ( value - new_value >A )

return value

return new_value

}

2、中位值滤波法

A、方法:

连续采样N次(N取奇数)

把N次采样值按大小排列

取中间值为本次有效值

B、优点:

能有效克服因偶然因素引起的波动干扰

对温度、液位的变化缓慢的被测参数有良好的滤波效果

C、缺点:

对流量、速度等快速变化的参数不宜

/*N值可根据实际情况调整

排序采用冒泡法*/

#define N 11

charfilter()

{

char value_buf[N]

char count,i,j,temp

for ( count=0count<Ncount++)

{

value_buf[count] = get_ad()

delay()

}

for (j=0j<N-1j++)

{

for(i=0i<N-ji++)

{

if ( value_buf[i]>value_buf[i+1] )

{

temp = value_buf[i]

value_buf[i] = value_buf[i+1]

value_buf[i+1] = temp

}

}

}

return value_buf[(N-1)/2]

}

3、算术平均滤波法

A、方法:

连续取N个采样值进行算术平均运算

N值较大时:信号平滑度较高,但灵敏度较低

N值较小时:信号平滑度较低,但灵敏度较高

N值的选取:一般流量,N=12;压力:N=4

B、优点:

适用于对一般具有随机干扰的信号进行滤波

这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动

C、缺点:

对于测量速度较慢或要求数据计算速度较快的实时控制不适用

比较浪费RAM

#defineN 12

charfilter()

{

int sum = 0

for (count=0count<Ncount++)

{

sum + = get_ad()

delay()

}

return (char)(sum/N)

}

4、递推平均滤波法(又称滑动平均滤波法)

A、方法:

把连续取N个采样值看成一个队列

队列的长度固定为N

每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)

把队列中的N个数据进行算术平均运算,就可获得新的滤波结果

N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4

B、优点:

对周期性干扰有良好的抑制作用,平滑度高

适用于高频振荡的系统

C、缺点:

灵敏度低

对偶然出现的脉冲性干扰的抑制作用较差

不易消除由于脉冲干扰所引起的采样值偏差

不适用于脉冲干扰比较严重的场合

比较浪费RAM

#defineN 12

charvalue_buf[N]

char i=0

charfilter()

{

char count

intsum=0

value_buf[i++] = get_ad()

if ( i == N ) i = 0

for (count=0count<N,count++)

sum =value_buf[count]

return (char)(sum/N)

}

5、中位值平均滤波法(又称防脉冲干扰平均滤波法)

A、方法:

相当于“中位值滤波法”+“算术平均滤波法”

连续采样N个数据,去掉一个最大值和一个最小值

然后计算N-2个数据的算术平均值

N值的选取:3~14

B、优点:

融合了两种滤波法的优点

对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差

C、缺点:

测量速度较慢,和算术平均滤波法一样

比较浪费RAM

#defineN 12

charfilter()

{

char count,i,j

charvalue_buf[N]

int sum=0

for(count=0count<Ncount++)

{

value_buf[count] = get_ad()

delay()

}

for (j=0j<N-1j++)

{

for(i=0i<N-ji++)

{

if ( value_buf[i]>value_buf[i+1] )

{

temp = value_buf[i]

value_buf[i] = value_buf[i+1]

value_buf[i+1] = temp

}

}

}

for(count=1count<N-1count++)

sum += value[count]

return (char)(sum/(N-2))

}

6、限幅平均滤波法

A、方法:

相当于“限幅滤波法”+“递推平均滤波法”

每次采样到的新数据先进行限幅处理,

再送入队列进行递推平均滤波处理

B、优点:

融合了两种滤波法的优点

对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差

C、缺点:

比较浪费RAM

/*

*/

略参考子程序1、3

7、一阶滞后滤波法

A、方法:

取a=0~1

本次滤波结果=(1-a)*本次采样值+a*上次滤波结果

B、优点:

对周期性干扰具有良好的抑制作用

适用于波动频率较高的场合

C、缺点:

相位滞后,灵敏度低

滞后程度取决于a值大小

不能消除滤波频率高于采样频率的1/2的干扰信号

/*为加快程序处理速度假定基数为100,a=0~100*/

#definea 50

char value

charfilter()

{

char new_value

new_value = get_ad()

return (100-a)*value +a*new_value

}

8、加权递推平均滤波法

A、方法:

是对递推平均滤波法的改进,即不同时刻的数据加以不同的权

通常是,越接近现时刻的数据,权取得越大。

给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低

B、优点:

适用于有较大纯滞后时间常数的对象

和采样周期较短的系统

C、缺点:

对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号

不能迅速反应系统当前所受干扰的严重程度,滤波效果差

/*coe数组为加权系数表,存在程序存储区。*/

#defineN 12

charcode coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12}

char code sum_coe =1+2+3+4+5+6+7+8+9+10+11+12

charfilter()

{

char count

charvalue_buf[N]

int sum=0

for(count=0,count<Ncount++)

{

value_buf[count] = get_ad()

delay()

}

for(count=0,count<Ncount++)

sum+= value_buf[count]*coe[count]

return(char)(sum/sum_coe)

}

9、消抖滤波法

A、方法:

设置一个滤波计数器

将每次采样值与当前有效值比较:

如果采样值=当前有效值,则计数器清零

如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出)

如果计数器溢出,则将本次值替换当前有效值,并清计数器

B、优点:

对于变化缓慢的被测参数有较好的滤波效果,

可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动

C、缺点:

对于快速变化的参数不宜

如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统

#defineN 12

charfilter()

{

char count=0

charnew_value

new_value = get_ad()

while (value !=new_value)

{

count++

if (count>=N) return new_value

delay()

new_value = get_ad()

}

return value

}

10、限幅消抖滤波法

A、方法:

相当于“限幅滤波法”+“消抖滤波法”

先限幅,后消抖

B、优点:

继承了“限幅”和“消抖”的优点

改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统

C、缺点:

对于快速变化的参数不宜


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11562792.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-17
下一篇 2023-05-17

发表评论

登录后才能评论

评论列表(0条)

保存