应用虚拟化的优势
1.灵活性
应用虚拟化使应用能够在不兼容的环境下运行,例如在Linux设备上运行Windows应用。虚拟化应用还提供了同时运行多个不兼容应用程序的功能,而且这些应用程序不会受到彼此的影响。
2.隔离性
将应用从主机环境中隔离出来,提供了更好的安全性,降低了应用出错影响整个系统的可能性。
3.资源依赖
和完整的虚拟机相比,虚拟应用对资源的依赖更小,在提供虚拟化优势的同时没有引入其他开销。
4.部署更简单
虚拟化应用作为一个完整的实体存在,有自己的 *** 作系统,与其他应用程序彼此隔离。只需要运行hypervisor启动虚拟应用程序就能够完成部署。
5.粒度更细的安全性
虚拟应用有直接针对容器以防止其执行的安全策略。而且可以只授权给用户启动虚拟应用所需要的权限,并不允许其访问其他网络资源。
应用虚拟化的不足
应用虚拟化的优势让这门技术听起来像是迄今为止最好的技术,但是它也存在一些明显的不足。
1.并不是所有的应用都能够被虚拟化
某些应用程序直接调用硬件,必须运行在共享内存空间中或者需要只与专有设备兼容的特定设备驱动器。这样的例子包括销售点解决方案,扫描以及其他数据捕获产品。
2.本地集成
某些应用过度依赖于与特定的 *** 作系统进行本地集成而且直接调用 *** 作系统才能够正常使用。这方面的例子包括计算机辅助设计以及视频编辑软件。
3.兼容性
在很多情况下,应用虚拟化只解决与文件以及注册表控制相关的兼容性问题。对于直接控制动态内存访问的应用程序来说,虚拟化无法避免这些调用而且可能会导致系统崩溃。
4.许可问题
应用虚拟化使克隆以及部署应用变得非常简单。然而这也使违背用户许可变得简单起来。
虚拟化(Virtualization)技术最早出现在20世纪60年代的IBM大型机系统,在70年代的System 370系列中逐渐流行起来。这些机器通过一种叫虚拟机监控器(Virtual Machine Monitor,VMM)的程序在物理硬件之上生成许多可以运行独立 *** 作系统软件的虚拟机(Virtual Machine)实例。
随着近年计算机技术的进步,无论是服务器市场、桌面市场,还是嵌入式市场,处理器的频率和核心数目都出现了巨大的进步,从而带来了处理能力的迅速增长,使得虚拟化技术再次迅速发展起来,并从最初的的 裸机虚拟化 技术开始,演化出 主机虚拟化 、 混合虚拟化 等更复杂的虚拟化模型,并在此基础山发展出了当下最热门的 云虚拟化 技术,极大地降低了IT成本,增强了系统的安全性,可靠性和扩展性。
在计算机领域,虚拟化是一个广义的概念。简而言之,虚拟化是指对计算机资源的抽象。虚拟机最初被Popek和Goldberg定义为物理机器的一个或多个隔离的有效复制[16]。J.E. Smith和RaviNair给出了一个更具体化的定义:虚拟机是通过在物理平台上添加的软件给出的一个或多个不同的平台。一个虚拟机可以有一个 *** 作系统和指令集,或者两者都有,可以不同于底下的真实的硬件。
虚拟化技术的本质在于对计算机系统软硬件资源的划分和抽象。计算机系统的高度复杂性是通过各种层次的抽象来控制,每一层都通过层与层之间的接口对底层进行抽象,隐藏底层具体实现而向上层提供较简单的接口。
计算机系统包括五个抽象层:硬件抽象层,指令集架构层, *** 作系统层,库函数层和应用程序层。相应地,虚拟化可以在每个抽象层来实现。无论是在哪个抽象层实现,其本质都是一样的,那就是它使用某些手段来管理分配底层资源,并将底层资源反映给上层。 *** 作系统上传统的进程模型就利用了虚拟化的思想, *** 作系统通过对物理内存的划分和抽象,给每个进程呈现出远超出物理内存空间的4G空间,并且使得每个进程实现了有效的隔离,从而一个进程的崩溃不会影响到其它进程的正常运行。
虚拟化平台是 *** 作系统层虚拟化的实现。在系统虚拟化中,虚拟机(VM)是在一个硬件平台上模拟一个或者多个独立的和实际底层硬件相同的执行环境。每个虚拟的执行环境里面可以运行不同的 *** 作系统,即客户机 *** 作系统(Guest OS)。Guest OS通过虚拟机监控器提供的抽象层来实现对物理资源的访问和 *** 作。目前存在各种各样的虚拟机,但基本上所有虚拟机都基于"计算机硬件 + 虚拟机监视器(VMM)+ 客户机 *** 作系统(Guest OS)"的模型。
虚拟机监控器是计算机硬件和Guest OS之间的一个抽象层,它运行在最高特权级,负责将底层硬件资源加以抽象,提供给上层运行的多个虚拟机使用,并且为上层的虚拟机提供多个隔离的执行环境,使得每个虚拟机都以为自己在独占整个计算机资源。虚拟机监控器可以将运行在不同物理机器上的 *** 作系统和应用程序合并到同一台物理机器上运行,减少了管理成本和能源损耗,并且便于系统的迁移。
根据虚拟机监视器在虚拟化平台中的位置,可以将其分为以下3种模型:
虚拟机监视器采用的虚拟化技术分为以下4种:
嵌入式系统是虚拟化技术的新方向和重要分支。
嵌入式处理器的迅速发展使得嵌入式系统在更多方面得到了广泛的应用。而嵌入式设备应用的普及导致其对软硬件的需求也越来越高。硬件体现在不断增强的计算能力和多种多样的外部设备,软件体现在愈加复杂的新功能特性。这些问题导致嵌入式开发变得复杂和软件维护成本的增加。原来的SMP和AMP等多核 *** 作系统方案无法满足安全隔离、硬件资源分配和复用等日益复杂的要求。因此,服务器和桌面系统上的虚拟化技术被引入了嵌入式 *** 作系统领域,并借助于硬件辅助虚拟化技术,解决了虚拟化技术带来的便利性与嵌入式系统得实时性要求之间的矛盾,使得以Linux KVM、Xen等嵌入式虚拟化平台得到了迅速发展。
虚拟化平台在硬件和 *** 作系统之间引入了一个新的抽象层次,称为虚拟机监控器(Virtual Machine Monitor,简称VMM),由它接管所有的硬件,并管理运行其上的所有虚拟机(Virtual Machine,简称VM),而每个虚拟机中可以运行各自的 *** 作系统。
虚拟化的优点在于实现了资源的重用,使得一个物理平台上面可以同时运行多个不同的 *** 作系统。通过利用系统虚拟化技术,可以在嵌入式设备中同时运行实时 *** 作系统和通用 *** 作系统,分别发挥各自的优势——实时 *** 作系统处理实时任务,通用 *** 作系统提供丰富的应用程序,它们彼此分工协作,发挥各自的优势,同时满足各种不同的需求。
但与此同时,虚拟化平台技术也引入了新问题。不少嵌入式系统对实时性能都有比较高的要求,而虚拟机与虚拟机监控器间的切换导致处理器 *** 作模式的切换和上下文的切换,会增加系统的响应时间,从而增加实时系统的时间不确定性,影响了实时系统的性能。虚拟机对运行于其上的应用程序的隔离又增加了虚拟机监控器的精确调度的难度,目前的虚拟机监控器也只能基于虚拟机的优先级或者时间片分配而进行粗粒度的调度。此外,现存的虚拟化平台技术主要基于X86等通用计算机平台,对ARM、MIPS等嵌入式处理器支持不够,在功能性和稳定性上都有所缺失。
综上所述,虚拟化可以解决嵌入式系统目前面临的不少问题,带来很多方便,但由于现存虚拟化解决方案(如KVM和XEN)在设计之初并没有考虑嵌入式系统的特殊需求,从导致功能性、实时性、稳定性都有所缺失。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)