全称为Ensemble Empirical Mode Decomposition (集合经验模分解)(Wu and Huang, 2009),是EMD(经验模分解)(Huang et al. 1998Huang and Wu, 2008)的改进算法,有效的解决了EMD的混频现象。
Wu, Z., and N. E. Huang, 2009: Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1, 1?41.
Huang, N. E., and Z. Wu, 2008: A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, doi:10.1029/2007RG000228.
Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, E. H. Shih, Q. Zheng, C. C. Tung, and H. H. Liu, 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society A, London, 454, 903–995.
在气候领域的应用如:
Wu, Z., E. K. Schneider, B. P. Kirtman, E. S. Sarachik, N. E. Huang, and C. J. Tucker, 2008: The modulated annual cycle: an alternative reference frame for climate anomalies. Climate Dyn., 31, 823–841.
Qian, C., C. Fu, Z. Wu, and Z. Yan, 2009: On the secular change of spring onset at Stockholm. Geophys. Res. Lett., 36, L12706, doi: 10.1029/2009GL038617.
Franzke, C., 2010: Long-range dependence and climate noise characteristics of Antarctic temperature data. J. Climate, doi: 10.1175/2010JCLI3654.1
Breaker, L. C., and A. Ruzmaikin, 2010: The 154-year record of sea level at San Francisco: extracting the long-term trend, recent changes, and other tidbits. Climate Dynamics, doi: 10.1007/s00382-010-0865-4
在工程领域的应用如:
李海涛,王成国,许跃生,吴朝华, 2007: 基于EEMD的轨道—车辆系统垂向动力学的时频分析. 中国铁道科学,28(5), 24-30.
Lei, Y., Z. He, Y. Zi, 2009: Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing, 23 (4), 1327-1338.
这个分解是基于希尔伯特-黄变换和希尔伯特变换而来,通过黄变换滤除信号里局域的直流成分,短时内是纯交流成分。而之所以不直接使用希尔伯特变换后利用复信号的d(phi)/dt=w (phi是角度)的方式来求信号的瞬时频率,是因为信号可能存在非频率波动的成分,也就是说可能信号的波动是因幅值引起,这样求得的频率可能是负值,而希尔伯特变换的信号频率不存在负的,所以才需要以上的黄变换这个分解imf的过程。但这个分解精度纯粹因信号本身而异,存在一定的风险。不过据我认为,信号在离散的情况下,黄变换并不是必须的,只需要在希尔伯特变换之前加一些简单处理即可,这种方式得到的瞬时频率与用了imf后得到的再matlab下得到的图像基本一样。楼主可自己编写程序,这个程序包不是必须欢迎分享,转载请注明来源:内存溢出
评论列表(0条)